(ω,c)-Periodic Solution to Semilinear Integro-Differential Equations with Hadamard Derivatives
Abstract
:1. Introduction
2. Preliminary
3. The -Periodic Solution to Semilinear Integro Differential Equations
- (I):
- There are continuous functions and , such that
- (II):
- There are constants and such that
- (III):
- There is a constant such that
- (IV):
- and , such that , and for any
- (V):
- The kernel map is locally integrable on and .
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
diff. | differential |
eq. | equation |
eqs. | equations |
fra. | fractional |
References
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1989. [Google Scholar]
- Bainov, D.; Simeonov, P. Impulsive Differential Equations: Periodic Solutions and Applications; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Bainov, D.; Simeonov, P. Oscillation Theory of Impulsive Differential Equations; International Publications: Philadelphia, PA, USA, 1998. [Google Scholar]
- Stamov, G.T. Almost Periodic Solutions of Impulsive Differential Equations; Springer: Berlin, Germany, 2012. [Google Scholar]
- Agaoglou, M.; Fečkan, M.; Panagiotidou, A.P. Existence and uniqueness of (ω,c)-periodic solutions of semilinear evolution equations. Int. J. Dyn. Sys. Differ. Equ. 2020, 10, 149–166. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Tian, Y. Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediter. J. Math. 2017, 14, 46. [Google Scholar] [CrossRef]
- Alvarez, E.; Gómez, A.; Pinto, M. (ω,c)-periodic functions and mild solutions to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 2018, 16, 1–8. [Google Scholar] [CrossRef]
- Alvarez, E.X.; Castillo, S.; Pinto, M. (ω,c)-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 2019, 2019, 106. [Google Scholar] [CrossRef]
- Ren, L.; Wang, J.R. (ω,c)-Periodic Solutions to Fractional Differential Equations with Impulses. Axioms 2022, 11, 83. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Fečkan, M. (ω,c)-periodic solutions for impulsive differential systems. Commun. Math. Anal. 2018, 21, 35–45. [Google Scholar]
- Wang, J.; Ren, L.; Zhou, Y. (ω,c)-periodic solutions for time varying impulsive differential equations. Adv. Differ. Equ. 2019, 2019, 259. [Google Scholar] [CrossRef]
- Khalladi, M.T.; Rahmani, A. (ω,c)-Pseudo almost periodic distributions. Nonauton. Dyn. Syst. 2020, 7, 237–248. [Google Scholar] [CrossRef]
- Al-Omari, A.; Al-Saadi, H. (ω,ρ)-BVP solution of impulsive Hadamard fractional differential equations. Mathematics 2023, 11, 4370. [Google Scholar] [CrossRef]
- Al-Omari, A.; Al-Saadi, H. Impulsive fractional order integrodifferential equation via fractional operators. PLoS ONE 2023, 18, e0282665. [Google Scholar] [CrossRef] [PubMed]
- Duan, J. The periodic solution of fractional oscillation equation with periodic input. Adv. Math. Phys. 2013, 2013, 869484. [Google Scholar] [CrossRef]
- Li, M.; Lim, S.C.; Chen, S. Exact solution of impulse response to a class of fractional oscillators and its stability. Math. Probl. Eng. 2011, 2011, 657839. [Google Scholar] [CrossRef]
- El-Dib, Y.; Elgazery, N. Effect of fractional derivative properties on the periodic solution of the nonlinear oscillations. Fractals 2020, 28, 2050095. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Wang, J.R.; Fečkan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Frac. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Omari, A.; Al-Saadi, H.; Alharbi, F. (ω,c)-Periodic Solution to Semilinear Integro-Differential Equations with Hadamard Derivatives. Fractal Fract. 2024, 8, 86. https://doi.org/10.3390/fractalfract8020086
Al-Omari A, Al-Saadi H, Alharbi F. (ω,c)-Periodic Solution to Semilinear Integro-Differential Equations with Hadamard Derivatives. Fractal and Fractional. 2024; 8(2):86. https://doi.org/10.3390/fractalfract8020086
Chicago/Turabian StyleAl-Omari, Ahmad, Hanan Al-Saadi, and Fawaz Alharbi. 2024. "(ω,c)-Periodic Solution to Semilinear Integro-Differential Equations with Hadamard Derivatives" Fractal and Fractional 8, no. 2: 86. https://doi.org/10.3390/fractalfract8020086
APA StyleAl-Omari, A., Al-Saadi, H., & Alharbi, F. (2024). (ω,c)-Periodic Solution to Semilinear Integro-Differential Equations with Hadamard Derivatives. Fractal and Fractional, 8(2), 86. https://doi.org/10.3390/fractalfract8020086