Boundary Value Problem for a Coupled System of Nonlinear Fractional q-Difference Equations with Caputo Fractional Derivatives
Abstract
:1. Introduction
- and denote the fractional q-derivatives of the Caputo type of orders ,
- denotes Riemann–Liouville integral of order
- , are real constants and
- are given continuous functions satisfied the following hypotheses:
- (H1)
- There exist constants , such that, for each and we have
- (H2)
- There exist real numbers and such that, we have
1.1. Contributions of This Paper
1.2. Construction of This Paper
2. Preliminary Results and Essential Concepts
- Notations
3. Main Results
3.1. Equivalent Integral Equation
3.2. Uniqueness of Solutions
3.3. Existence of Solutions
4. Stability Analysis
- (i)
- (ii)
Parameter Sensitivity Analysis
- The existence of a solution is crucial for validating the model, establishing feasibility and robustness, solving boundary value problems, enabling mathematical analysis, supporting practical applications, and developing a fundamental understanding of the system’s behavior. It ensures that the system can be adequately described, analyzed, and utilized in various domains and applications. For the system to be solvable, the parameters must be chosen within specific ranges so that the following condition is met:
- The uniqueness of the solution ensures the predictability, reliability, stability, and validity of the mathematical model. It plays a crucial role in understanding and analyzing the behavior of systems in diverse fields, enabling accurate predictions, decision-making, and parameter estimation. For the solution of system (2) to be unique, the parameters must be chosen so that the following conditions are met:
- Stable solutions that are robust and converge to a desired equilibrium or periodic behavior, as described in system (1), provide valuable insights into the system’s long-term behavior and predictability. To ensure the reliability and applicability of the model in real-world scenarios, it is crucial to select parameter ranges that satisfy the following condition: where
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Rubio Lopez, F.; Rubio, O. A new fractional curvature of curves using the caputo’s fractional derivative. Adv. Math. Model. Appl. 2023, 8, 157–175. [Google Scholar]
- Salati, S.; Matinfar, M.; Jafari, H. A numerical approach for solving Bagely-Torvik and fractional oscillation equations. Adv. Model. Appl. 2023, 8, 241–252. [Google Scholar]
- Asaduzzaman, M.; Ali, M.Z. Existence of multiple positive solutions to the Caputo-type nonlinear fractional Differential equation with integral boundary value conditions. Fixed Point Theory 2022, 23, 127–142. [Google Scholar] [CrossRef]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Carmichael, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Mason, T.E. On properties of the solutions of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Cheung, P.; Kac, V.G. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cao, J.; Huang, J.Y.; Fadel, M.; Arjika, S. A Review of q-Difference Equations for Al-Salam–Carlitz Polynomials and Applications to U(n + 1) Type Generating Functions and Ramanujan’s Integrals. Mathematics 2023, 11, 1655. [Google Scholar] [CrossRef]
- Cao, J.; Srivastava, H.M.; Zhou, H.L.; Arjika, S. Generalized q-difference equations for q-hypergeometric polynomials with double q-binomial coefficients. Mathematics 2022, 10, 556. [Google Scholar] [CrossRef]
- Jia, Z.; Khan, B.; Hu, Q.; Niu, D. Applications of generalized q-difference equations for general q-polynomials. Symmetry 2021, 13, 1222. [Google Scholar] [CrossRef]
- Laledj, N.; Salim, A.; Lazreg, J.E.; Abbas, S.; Ahmad, B.; Benchohra, M. On implicit fractional q-difference equations: Analysis and stability. Math. Methods Appl. Sci. 2022, 45, 10775–10797. [Google Scholar] [CrossRef]
- Allouch, N.; Graef, J.R.; Hamani, S. Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces. Fractal Fract. 2022, 6, 237. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Kaabar, M.K.; Martínez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval. J. Inequalities Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- El-Shahed, M.; Hassan, H. Positive solutions of q-difference equation. Proc. Am. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. 2011, 2011, 292860. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. 2012, 19, 59–72. [Google Scholar]
- Ahmad, B.; Nieto, J.J. On nonlocal boundary value problems of nonlinear q-difference equations. Adv. Differ. Equ. 2012, 81. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence of solutions for nonlinear fractional q-difference inclusions with nonlocal Robin (separated) conditions. Mediterr. J. Math. 2013, 10, 1333–1351. [Google Scholar] [CrossRef]
- Langevin, P. On the theory of Brownian motion. C. R. Acad. Sci. 1908, 146, 530–533. [Google Scholar]
- Almalahi, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative analysis of Langevin integro-fractional differential equation under Mittag–Leffler functions power law. Fractal Fract. 2021, 5, 266. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Frankl. Inst. 2014, 351, 2890–2909. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Alzabut, J.; Hussain, A.; Subramanian, M.; Rezapour, S. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Differ. Equ. 2021, 2021, 367. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities; World Scientific: Singapore, 2016; Volume 4, p. 288. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: Geneva, Switzerland, 1940. [Google Scholar]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1994, 122, 733–736. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redhwan, S.S.; Han, M.; Almalahi, M.A.; Alsulami, M.; Alyami, M.A. Boundary Value Problem for a Coupled System of Nonlinear Fractional q-Difference Equations with Caputo Fractional Derivatives. Fractal Fract. 2024, 8, 73. https://doi.org/10.3390/fractalfract8010073
Redhwan SS, Han M, Almalahi MA, Alsulami M, Alyami MA. Boundary Value Problem for a Coupled System of Nonlinear Fractional q-Difference Equations with Caputo Fractional Derivatives. Fractal and Fractional. 2024; 8(1):73. https://doi.org/10.3390/fractalfract8010073
Chicago/Turabian StyleRedhwan, Saleh S., Maoan Han, Mohammed A. Almalahi, Mona Alsulami, and Maryam Ahmed Alyami. 2024. "Boundary Value Problem for a Coupled System of Nonlinear Fractional q-Difference Equations with Caputo Fractional Derivatives" Fractal and Fractional 8, no. 1: 73. https://doi.org/10.3390/fractalfract8010073
APA StyleRedhwan, S. S., Han, M., Almalahi, M. A., Alsulami, M., & Alyami, M. A. (2024). Boundary Value Problem for a Coupled System of Nonlinear Fractional q-Difference Equations with Caputo Fractional Derivatives. Fractal and Fractional, 8(1), 73. https://doi.org/10.3390/fractalfract8010073