Asymptotic Synchronization for Caputo Fractional-Order Time-Delayed Cellar Neural Networks with Multiple Fuzzy Operators and Partial Uncertainties via Mixed Impulsive Feedback Control
Abstract
:1. Introduction
2. Preparatory Knowledge and Methods
3. Main Results
- Step 1: Initialize network parameters , and .
- Step 2: Compute the Lipschitz parameters and by Assumption 1.
- Step 3: Set impulsive gain ϖ and feedback gain , and calculate the values of and .
- Step 4: Design impulsive intervals utilizing the following rules.
- (i)
- When and condition (19) holds, impulsive intervals are not absolutely restricted.
- (ii)
- When , impulsive intervals are determined by , where , , and .
- (iii)
- When , impulsive intervals are determined by , where , , and .
4. Discussion and Verification of Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Z.; Xuan, D.L.; Park, J.H.; Wang, Y.; Feng, J.W. Impulsive effects based distributed synchronization of heterogeneous coupled neural networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 498–510. [Google Scholar] [CrossRef]
- Fan, H.G.; Chen, X.J.; Shi, K.B.; Wen, H. Distributed delayed impulsive control for μ-synchronization of multi-link structure networks with bounded uncertainties and time-varying delays of unmeasured bounds: A novel Halanay impulsive inequality approach. Chaos Solitons Fractals 2024, 186, 115226. [Google Scholar] [CrossRef]
- Ding, K.; Zhu, Q.X. A note on sampled-data synchronization of memristor networks subject to actuator failures and two different activations. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2097–2101. [Google Scholar] [CrossRef]
- Wang, S.T.; Shi, K.B.; Cao, J.D.; Wen, S.P. Fuzzy adaptive event-triggered synchronization control mechanism for T-S fuzzy RDNNs under deception attacks. Commun. Nonlinear Sci. Numer. Simul. 2024, 134, 107985. [Google Scholar] [CrossRef]
- Cai, J.Y.; Yi, C.B.; Wu, Y.; Liu, D.Q.; Zhong, D.G. Leader-following consensus of nonlinear singular switched multi-agent systems via sliding mode control. Asian J. Control 2024, 26, 1997–2010. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Y.G.; Wen, G.G.; Zhang, S.; Yu, J.Z. Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 2015, 154, 15–23. [Google Scholar] [CrossRef]
- Wang, S.T.; Shi, K.B.; Wang, J.; Yu, Y.B.; Wen, S.P.; Yang, J.; Han, S. Synchronization sampled-data control of uncertain neural networks under an asymmetric Lyapunov-Krasovskii functional method. Expert Syst. Appl. 2024, 239, 122475. [Google Scholar] [CrossRef]
- Tang, C.; Li, X.Q.; Wang, Q. Mean-field stochastic linear quadratic optimal control for jump-diffusion systems with hybrid disturbances. Symmetry 2024, 16, 642. [Google Scholar] [CrossRef]
- Kong, F.C.; Zhu, Q.X.; Huang, T.W. New fixed-time stability lemmas and applications to the discontinuous fuzzy inertial neural networks. IEEE Trans. Fuzzy Syst. 2021, 29, 3711–3722. [Google Scholar] [CrossRef]
- Shi, K.B.; Cai, X.; She, K.; Wen, S.P.; Zhong, S.M.; Park, P.; Kwon, O.-M. Stability analysis and security-based event-triggered mechanism design for T-S fuzzy NCS with traffic congestion via DoS attack and its application. IEEE Trans. Fuzzy Syst. 2023, 31, 3639–3651. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Y.Q.; Hu, A.H.; Xu, X.Y. Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dyn. 2015, 82, 1979–1987. [Google Scholar] [CrossRef]
- Yao, W.; Wang, C.H.; Sun, Y.C.; Gong, S.Q.; Lin, H.R. Event-triggered control for robust exponential synchronization of inertial memristive neural networks under parameter disturbance. Neural Netw. 2023, 164, 67–80. [Google Scholar] [CrossRef]
- Li, X.F.; Zhang, W.B.; Fang, J.A.; Li, H.Y. Finite-time synchronization of memristive neural networks with discontinuous activation functions and mixed time-varying delays. Neurocomputing 2019, 340, 99–109. [Google Scholar] [CrossRef]
- Fu, Q.H.; Zhong, S.M.; Jiang, W.B.; Xie, W.Q. Projective synchronization of fuzzy memristive neural networks with pinning impulsive control. J. Frankl. Inst. 2020, 357, 10387–10409. [Google Scholar] [CrossRef]
- Ding, D.; Tang, Z.; Park, J.H.; Wang, Y.; Ji, Z.C. Dynamic self-triggered impulsive synchronization of complex networks with mismatched parameters and distributed delay. IEEE Trans. Cybern. 2023, 53, 887–899. [Google Scholar] [CrossRef]
- Ding, D.; Tang, Z.; Wen, C.B.; Ji, Z.C. Bipartite synchronization for coupled memristive neural networks: Memory-based dynamic updating law. Knowl.-Based Syst. 2024, 299, 112102. [Google Scholar] [CrossRef]
- Hua, W.T.; Wang, Y.T.; Liu, C.Y. New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays. Appl. Math. Comput. 2024, 471, 128593. [Google Scholar] [CrossRef]
- Li, R.X.; Cao, J.D. Stabilization and synchronization control of quaternion-valued fuzzy memristive neural networks: Nonlinear scalarization approach. Fuzzy Sets Syst. 2024, 477, 108832. [Google Scholar] [CrossRef]
- Alsaedi, A.; Cao, J.D.; Ahmad, B.; Alshehri, A.; Tan, X.G. Synchronization of master-slave memristive neural networks via fuzzy output-based adaptive strategy. Chaos Solitons Fractals 2022, 158, 112095. [Google Scholar] [CrossRef]
- Duan, L.; Wei, H.; Huang, L.H. Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations. Fuzzy Sets Syst. 2019, 361, 56–70. [Google Scholar] [CrossRef]
- Fan, H.G.; Rao, Y.; Shi, K.B.; Wen, H. Time-varying function matrix projection synchronization of Caputo fractional-order uncertain memristive neural networks with multiple delays via mixed open loop feedback control and impulsive control. Fractal Fract. 2024, 8, 301. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Z.W.; Yang, Y.Q. Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control. Chaos Solitons Fractals 2021, 142, 110465. [Google Scholar] [CrossRef]
- Gu, Y.J.; Yu, Y.G.; Wang, H. Projective synchronization for fractional-order memristor-based neural networks with time delays. Neural Comput. Appl. 2019, 31, 6039–6054. [Google Scholar] [CrossRef]
- Gu, Y.J.; Wang, H.; Yu, Y.G. Synchronization for commensurate Riemann–Liouville fractional-order memristor-based neural networks with unknown parameters. J. Frankl. Inst. 2020, 357, 8870–8898. [Google Scholar] [CrossRef]
- Chen, J.J.; Zeng, Z.G.; Jiang, P. Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 2014, 51, 1–8. [Google Scholar] [CrossRef]
- Bao, H.B.; Cao, J.D. Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 2015, 63, 1–9. [Google Scholar] [CrossRef]
- Mao, K.; Liu, X.Y.; Cao, J.D.; Hu, Y.F. Finite-time bipartite synchronization of coupled neural networks with uncertain parameters. Phys. A 2022, 585, 126431. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.P.; Gu, P.P.; Lopes, A.M.; Wang, M.W.; Du, W.X. Adaptive neural network feedback control for uncertain fractional-order building structure vibration systems. Alex. Eng. J. 2024, 104, 627–635. [Google Scholar] [CrossRef]
- Boulham, I.A.; Boubakir, A.; Labiod, S. Neural network L1 adaptive control for a class of uncertain fractional order nonlinear systems. Integration 2022, 83, 1–11. [Google Scholar] [CrossRef]
- Xu, S.; Liu, H.; Han, Z.M. The passivity of uncertain fractional-order neural networks with time-varying delays. Fractal Fract. 2022, 6, 375. [Google Scholar] [CrossRef]
- Liu, S.X.; Yu, Y.G.; Zhang, S. Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties. Neural Comput. Appl. 2019, 31, 3533–3542. [Google Scholar] [CrossRef]
- Fan, H.G.; Chen, X.J.; Shi, K.B.; Liang, Y.H.; Wang, Y.; Wen, H. Mittag–Leffler synchronization in finite time for uncertain fractional-order multi-delayed memristive neural networks with time-varying perturbations via information feedback. Fractal Fract. 2024, 8, 422. [Google Scholar] [CrossRef]
- Yan, H.Y.; Qiao, Y.H.; Ren, Z.H.; Duan, L.J.; Miao, J. Master-slave synchronization of fractional-order memristive MAM neural networks with parameter disturbances and mixed delays. Commun. Nonlinear Sci. Numer. Simul. 2023, 120, 107152. [Google Scholar] [CrossRef]
- Yang, X.J.; Li, C.D.; Huang, T.W.; Song, Q.K.; Huang, J.J. Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays. Chaos Solitons Fractals 2018, 110, 105–123. [Google Scholar] [CrossRef]
- Du, F.F.; Lu, J.G. Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks. Fuzzy Sets Syst. 2023, 466, 108480. [Google Scholar] [CrossRef]
- Peng, Q.; Jian, J.G. Asymptotic synchronization of second-fractional-order fuzzy neural networks with impulsive effects. Chaos Solitons Fractals 2023, 168, 113150. [Google Scholar] [CrossRef]
- Zhao, F.; Jian, J.G.; Wang, B.X. Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks. Fuzzy Sets Syst. 2023, 467, 108578. [Google Scholar] [CrossRef]
- Li, H.L.; Cao, J.D.; Hu, C.; Jiang, H.J.; Alsaedi, A. Synchronization analysis of nabla fractional-order fuzzy neural networks with time delays via nonlinear feedback control. Fuzzy Sets Syst. 2024, 475, 108750. [Google Scholar] [CrossRef]
- Li, H.L.; Cao, J.D.; Hu, C.; Zhang, L.; Jiang, H.J. Adaptive control-based synchronization of discrete-time fractional-order fuzzy neural networks with time-varying delays. Neural Netw. 2023, 168, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Brewster, R.A.; Franson, J.D. Generalized delta functions and their use in quantum optics. J. Math. Phys. 2016, 59, 012102. [Google Scholar] [CrossRef]
- Gu, Y.J.; Huang, H.; Yu, Y.G. Stability and synchronization for Riemann–Liouville fractional-order time-delayed inertial neural networks. Neurocomputing 2019, 340, 270–280. [Google Scholar] [CrossRef]
- Chen, B.S.; Chen, J.J. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks. Neural Netw. 2015, 68, 78–88. [Google Scholar] [CrossRef]
- Li, H.L.; Jiang, Y.L.; Wang, Z.L.; Zhang, L.; Teng, Z.D. Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network. Appl. Math. Comput. 2015, 270, 269–277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Yi, C.; Shi, K.; Chen, X. Asymptotic Synchronization for Caputo Fractional-Order Time-Delayed Cellar Neural Networks with Multiple Fuzzy Operators and Partial Uncertainties via Mixed Impulsive Feedback Control. Fractal Fract. 2024, 8, 564. https://doi.org/10.3390/fractalfract8100564
Fan H, Yi C, Shi K, Chen X. Asymptotic Synchronization for Caputo Fractional-Order Time-Delayed Cellar Neural Networks with Multiple Fuzzy Operators and Partial Uncertainties via Mixed Impulsive Feedback Control. Fractal and Fractional. 2024; 8(10):564. https://doi.org/10.3390/fractalfract8100564
Chicago/Turabian StyleFan, Hongguang, Chengbo Yi, Kaibo Shi, and Xijie Chen. 2024. "Asymptotic Synchronization for Caputo Fractional-Order Time-Delayed Cellar Neural Networks with Multiple Fuzzy Operators and Partial Uncertainties via Mixed Impulsive Feedback Control" Fractal and Fractional 8, no. 10: 564. https://doi.org/10.3390/fractalfract8100564
APA StyleFan, H., Yi, C., Shi, K., & Chen, X. (2024). Asymptotic Synchronization for Caputo Fractional-Order Time-Delayed Cellar Neural Networks with Multiple Fuzzy Operators and Partial Uncertainties via Mixed Impulsive Feedback Control. Fractal and Fractional, 8(10), 564. https://doi.org/10.3390/fractalfract8100564