New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain
Abstract
1. Introduction and Definitions
2. Set of Lemmas
3. Main Results
3.1. Inverse Coefficients for the Function
3.2. Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitz. Ber. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. Fiz. 1996, 19, 101–105. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Ullah, K.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. A study of sharp coefficient bounds for a new subfamily of starlike functions. J. Inequalities Appl. 2021, 2021, 194. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Swarup, C. Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic tangent function. Symmetry. 2023, 15, 763. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a aubclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Barukab, O.; Arif, M.; Abbas, M.; Khan, S.K. Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain. J. Funct. Spaces 2021, 2021, 5535629. [Google Scholar] [CrossRef]
- Swamy, S.R.; Frasin, B.A.; Aldawish, I. Fekete–Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 1165. [Google Scholar] [CrossRef]
- Cotîrlă, L.I.; Wanas, A.K. Coefficient related studies and Fekete-Szegö type inequalities for new classes of bi-starlike and bi-convex functions. Symmetry 2022, 14, 2263. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.I. Coefficient estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants of a subclass of analytic functions. Bull. Malays. Math. Soc. 2002, 45, 323–359. [Google Scholar] [CrossRef]
- Wang, Z.G.; Arif, M.; Ahmad, K.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutawi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef]
- Cotîrlă, L.I.; Wanas, A.K. Applications of Laguerre polynomials for Bazilevic and θ-Pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions. Symmetry 2023, 15, 406. [Google Scholar] [CrossRef]
- Breaz, D.; Murugusundaramoorthy, G.; Cotîrlă, L.I. Geometric properties for a new class of analytic functions defined by a certain operator. Symmetry 2022, 14, 2624. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Company: Tampa, FL, USA, 1983; Volume I–II. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Paprocki, E.; Sokół, J. The extremal problems in some subclass of strongly starlike functions. Folia Scient. Univ. Techn. Resoviensis. 1996, 157, 89–94. [Google Scholar]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Noor, K.I.; Malik, S.N. On a new class of analytic functions associated with conic domain. Comput. Math. Appl. 2011, 62, 367–375. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Tech. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Env. Sci. Tran. Royal Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Attiya, A.A.; Ibrahim, R.W.; Albalahi, A.M.; Ali, E.E.; Bulboacă, T. A differential operator associated with q-raina function. Symmetry 2022, 14, 1518. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel determinants and coefficient estimates for starlike functions related to symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abst. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fract. 2020, 134, 109705. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jan, R.; Jan, A.; Deebai, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Chaos 2021, 31, 053130. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Abelman, S.; Selvakumaran, K.A.; Rashidi, M.M.; Purohit, S.D. Subordination conditions for a class of non-Bazilevic type defined by using fractional q-calculus operators. Facta M Univ. Ser. Math. Inf. 2017, 32, 255–267. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic hypergeometric series. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Kota, W.Y.; El-Ashwah, R.M.; Damietta, N. Some applications of subordination theorems associated with fractional q-calculus operator. Math. Bohem. 2023, 148, 131–148. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Elmorsy, R.E. Certain subclasses of analytic functions with varying arguments associated with q-difference operator. Afr. Mat. 2021, 32, 621–630. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Sokół, J.; Malik, S.N. On starlike functions associated with cardiod domain. Nouv. Série Tome 2021, 109, 95–107. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. (Ser. 2) 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokół, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some Applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [Google Scholar] [CrossRef]
- El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Am. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef]
- Indushree, M.; Venkataraman, M. An application of the prabhakar fractional operator to a subclass of analytic univalent function. Fractal Fract. 2023, 7, 266. [Google Scholar] [CrossRef]
- Khan, N.; Khan, K.; Tawfiq, F.M.; Ro, J.S.; Al-shbeil, I. Applications of fractional differential operator to subclasses of uniformly q-starlike functions. Fractal Fract. 2023, 7, 715. [Google Scholar] [CrossRef]
- Srivastava, H.M. Editorial for the special issue, Operators of fractional calculus and their multidisciplinary applications. Fractal Fract. 2023, 7, 415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; AbaOud, M. New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal Fract. 2024, 8, 71. https://doi.org/10.3390/fractalfract8010071
Khan MF, AbaOud M. New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal and Fractional. 2024; 8(1):71. https://doi.org/10.3390/fractalfract8010071
Chicago/Turabian StyleKhan, Mohammad Faisal, and Mohammed AbaOud. 2024. "New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain" Fractal and Fractional 8, no. 1: 71. https://doi.org/10.3390/fractalfract8010071
APA StyleKhan, M. F., & AbaOud, M. (2024). New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal and Fractional, 8(1), 71. https://doi.org/10.3390/fractalfract8010071