New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain
Abstract
:1. Introduction and Definitions
2. Set of Lemmas
3. Main Results
3.1. Inverse Coefficients for the Function
3.2. Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitz. Ber. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. Fiz. 1996, 19, 101–105. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Ullah, K.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. A study of sharp coefficient bounds for a new subfamily of starlike functions. J. Inequalities Appl. 2021, 2021, 194. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Swarup, C. Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic tangent function. Symmetry. 2023, 15, 763. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a aubclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Barukab, O.; Arif, M.; Abbas, M.; Khan, S.K. Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain. J. Funct. Spaces 2021, 2021, 5535629. [Google Scholar] [CrossRef]
- Swamy, S.R.; Frasin, B.A.; Aldawish, I. Fekete–Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 1165. [Google Scholar] [CrossRef]
- Cotîrlă, L.I.; Wanas, A.K. Coefficient related studies and Fekete-Szegö type inequalities for new classes of bi-starlike and bi-convex functions. Symmetry 2022, 14, 2263. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.I. Coefficient estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants of a subclass of analytic functions. Bull. Malays. Math. Soc. 2002, 45, 323–359. [Google Scholar] [CrossRef]
- Wang, Z.G.; Arif, M.; Ahmad, K.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutawi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef]
- Cotîrlă, L.I.; Wanas, A.K. Applications of Laguerre polynomials for Bazilevic and θ-Pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions. Symmetry 2023, 15, 406. [Google Scholar] [CrossRef]
- Breaz, D.; Murugusundaramoorthy, G.; Cotîrlă, L.I. Geometric properties for a new class of analytic functions defined by a certain operator. Symmetry 2022, 14, 2624. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Company: Tampa, FL, USA, 1983; Volume I–II. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Paprocki, E.; Sokół, J. The extremal problems in some subclass of strongly starlike functions. Folia Scient. Univ. Techn. Resoviensis. 1996, 157, 89–94. [Google Scholar]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Noor, K.I.; Malik, S.N. On a new class of analytic functions associated with conic domain. Comput. Math. Appl. 2011, 62, 367–375. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Tech. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Env. Sci. Tran. Royal Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Attiya, A.A.; Ibrahim, R.W.; Albalahi, A.M.; Ali, E.E.; Bulboacă, T. A differential operator associated with q-raina function. Symmetry 2022, 14, 1518. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel determinants and coefficient estimates for starlike functions related to symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abst. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fract. 2020, 134, 109705. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jan, R.; Jan, A.; Deebai, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Chaos 2021, 31, 053130. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Abelman, S.; Selvakumaran, K.A.; Rashidi, M.M.; Purohit, S.D. Subordination conditions for a class of non-Bazilevic type defined by using fractional q-calculus operators. Facta M Univ. Ser. Math. Inf. 2017, 32, 255–267. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic hypergeometric series. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Kota, W.Y.; El-Ashwah, R.M.; Damietta, N. Some applications of subordination theorems associated with fractional q-calculus operator. Math. Bohem. 2023, 148, 131–148. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Elmorsy, R.E. Certain subclasses of analytic functions with varying arguments associated with q-difference operator. Afr. Mat. 2021, 32, 621–630. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Sokół, J.; Malik, S.N. On starlike functions associated with cardiod domain. Nouv. Série Tome 2021, 109, 95–107. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. (Ser. 2) 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokół, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some Applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [Google Scholar] [CrossRef]
- El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Am. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef]
- Indushree, M.; Venkataraman, M. An application of the prabhakar fractional operator to a subclass of analytic univalent function. Fractal Fract. 2023, 7, 266. [Google Scholar] [CrossRef]
- Khan, N.; Khan, K.; Tawfiq, F.M.; Ro, J.S.; Al-shbeil, I. Applications of fractional differential operator to subclasses of uniformly q-starlike functions. Fractal Fract. 2023, 7, 715. [Google Scholar] [CrossRef]
- Srivastava, H.M. Editorial for the special issue, Operators of fractional calculus and their multidisciplinary applications. Fractal Fract. 2023, 7, 415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; AbaOud, M. New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal Fract. 2024, 8, 71. https://doi.org/10.3390/fractalfract8010071
Khan MF, AbaOud M. New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal and Fractional. 2024; 8(1):71. https://doi.org/10.3390/fractalfract8010071
Chicago/Turabian StyleKhan, Mohammad Faisal, and Mohammed AbaOud. 2024. "New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain" Fractal and Fractional 8, no. 1: 71. https://doi.org/10.3390/fractalfract8010071
APA StyleKhan, M. F., & AbaOud, M. (2024). New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal and Fractional, 8(1), 71. https://doi.org/10.3390/fractalfract8010071