Matkowski-Type Functional Contractions under Locally Transitive Binary Relations and Applications to Singular Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- •
- :=the set of fixed points of ;
- •
- .
- (i)
- θ is increasing;
- (ii)
- , .
- (i)
- (ii)
3. Main Results
- (a)
- ;
- (b)
- is locally -transitive and -closed;
- (c)
- is -complete;
- (d)
- remains -continuous or remains σ-self-closed;
- (e)
- there exists a comparison function θ and verifying
- Case-I: If for some , then . This yields that so that . Hence by induction, we obtain so that .
- Case-II: If , for all , then using induction on n in (11) and monotonicity of , we get
4. Illustrative Examples
5. Applications to Fractional Differential Equations
- remains continuous on ;
- ;
- ;
- ;
- .
- Case-I: When . Obviously, we have . As is continuous, ∃ a constant verifying
- Case-II: When . Assuming without loss of generality that , as the same argument will be hold in case , we shall now have to verify that . Indeed, we have
- Case-III: When . It can be easily shown that . Proceeding the lines of Case I, we can verify the continuity of at . This completes the proof. □
- (a)
- Clearly, ⋁ being a closed set of is a complete metric space with regard to the metric and hence is a -complete metric space.
- (b)
- Take implying thereby , for each . Consequently, we have
- (c)
- Let be a zero function. Then, for each , we have , thereby yielding .
- (d)
- Let be a -preserving sequence converging to . Then, , is an increasing sequence of reals converging to . This implies that and , so that . Consequently, remains -self-closed.
- (e)
- Take implying thereby , for each . Thus,
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matkowski, J. Integrable solutions of functional equations. Diss. Math. 1975, 127, 1–68. [Google Scholar]
- Jachymski, J. On probabilistic φ-contractions on Menger spaces. Nonlinear Anal. 2010, 73, 2199–2203. [Google Scholar] [CrossRef]
- Hussain, N.; Kadelburg, Z.; Radenović, S.; Al-Solamy, F. Comparison functions and fixed point results in partial metric spaces. Abstr. Appl. Anal. 2012, 2012, 605781. [Google Scholar] [CrossRef]
- Nǎdǎban, S.; Bînzar, T.; Pater, F. Some fixed point theorems for φ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 2017, 10, 5668–5676. [Google Scholar] [CrossRef]
- Abtahi, M.; Kadelburg, Z.; Radenović, S. Fixed points of Ćirić-Matkowski-type contractions in ν-generalized metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2017, 111, 57–64. [Google Scholar] [CrossRef]
- Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D. Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87, 109–116. [Google Scholar] [CrossRef]
- O’Regan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341, 1241–1252. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Radenović, S. Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2013, 107, 339–353. [Google Scholar] [CrossRef]
- Khantwal, D.; Gairola, U.C. An extension of Matkowski’s and Wardowski’s fixed point theorems with applications to functional equations. Aequat. Math. 2019, 93, 433–443. [Google Scholar] [CrossRef]
- Barcz, E. A new proof and consequences of the fixed point theorem of Matkowski. Ann. Math. Sil. 2021, 35, 149–157. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [Google Scholar] [CrossRef]
- Alam, A.; George, R.; Imdad, M. Refinements to relation-theoretic contraction principle. Axioms 2022, 11, 316. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems. Filomat 2017, 31, 4421–4439. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 2018, 19, 13–24. [Google Scholar] [CrossRef]
- Alam, A.; Arif, M.; Imdad, M. Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control functions. Miskolc Math. Notes 2019, 20, 59–73. [Google Scholar] [CrossRef]
- Sawangsup, K.; Sintunavarat, W.; Rolda´n-Lo´pez-de-Hierro, A.F. Fixed point theorems for FR-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl. 2017, 19, 1711–1725. [Google Scholar] [CrossRef]
- Abbas, M.; Iqbal, H.; Petruşel, A. Fixed Points for multivalued Suzuki type (θ,R)-contraction mapping with applications. J. Func. Spaces 2019, 2019, 9565804. [Google Scholar] [CrossRef]
- Ansari, K.J.; Sessa, S.; Alam, A. A class of relational functional contractions with applications to nonlinear integral equations. Mathematics 2023, 11, 3408. [Google Scholar] [CrossRef]
- Arif, M.; Imdad, M.; Alam, A. Fixed point theorems under locally T-transitive binary relations employing Matkowski contractions. Miskolc Math. Notes 2022, 23, 71–83. [Google Scholar] [CrossRef]
- Khan, F.A. (ψ,ϕ)-contractions under a class of transitive binary relations. Symmetry 2022, 14, 2111. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Imdad, M.; Saleh, H.N. On modified L-contraction via binary relation with an application. Fixed Point Theory 2022, 23, 267–278. [Google Scholar] [CrossRef]
- Algehyne, E.A.; Altaweel, N.H.; Areshi, M.; Khan, F.A. Relation-theoretic almost ϕ-contractions with an application to elastic beam equations. AIMS Math. 2023, 8, 18919–18929. [Google Scholar] [CrossRef]
- Almarri, B.; Mujahid, S.; Uddin, I. New fixed point results for Geraghty contractions and their applications. J. Appl. Anal. Comput. 2023, 13, 2788–2798. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, J. Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem. Comput. Math. Appl. 2011, 62, 1333–1340. [Google Scholar] [CrossRef]
- Cabrera, I.J.; Harjani, J.; Sadarangani, K.B. Existence and uniqueness of positive solutions for a singular fractional three-point boundary value problem. Abstr. Appl. Anal. 2012, 2012, 803417. [Google Scholar] [CrossRef]
- Saleh, S.M.; Alfaqih, W.M.; Sessa, S.; Di Martino, F. New relation-theoretic fixed point theorems in fuzzy metric spaces with an application to fractional differential equations. Axioms 2022, 11, 117. [Google Scholar] [CrossRef]
- Alamer, A.; Eljaneid, N.H.E.; Aldhabani, M.S.; Altaweel, N.H.; Khan, F.A. Geraghty type contractions in relational metric space with applications to fractional differential equations. Fractal Fract. 2023, 7, 565. [Google Scholar] [CrossRef]
- Abdou, A.A.N. Solving a nonlinear fractional differential equation using fixed point results in orthogonal metric spaces. Fractal Fract. 2023, 7, 817. [Google Scholar] [CrossRef]
- Lipschutz, S. Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Samet, B.; Turinici, M. Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 2012, 13, 82–97. [Google Scholar]
- Kolman, B.; Busby, R.C.; Ross, S. Discrete Mathematical Structures, 6th ed.; Pearson: Hoboken, NJ, USA; Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Muresan, A.S. Some remarks on the comparison functions. Prepr. Babes-Bolyai Univ. Fac. Math. Res. Semin. 1987, 9, 99–108. [Google Scholar]
- Jleli, M.; Rajic, V.C.; Samet, B.; Vetro, C. Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations. J. Fixed Point Theory Appl. 2012, 12, 175–192. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204, p. 523. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, F.A.; Eljaneid, N.H.E.; Alamer, A.; Alshaban, E.; Alamrani, F.M.; Alatawi, A. Matkowski-Type Functional Contractions under Locally Transitive Binary Relations and Applications to Singular Fractional Differential Equations. Fractal Fract. 2024, 8, 72. https://doi.org/10.3390/fractalfract8010072
Khan FA, Eljaneid NHE, Alamer A, Alshaban E, Alamrani FM, Alatawi A. Matkowski-Type Functional Contractions under Locally Transitive Binary Relations and Applications to Singular Fractional Differential Equations. Fractal and Fractional. 2024; 8(1):72. https://doi.org/10.3390/fractalfract8010072
Chicago/Turabian StyleKhan, Faizan Ahmad, Nidal H. E. Eljaneid, Ahmed Alamer, Esmail Alshaban, Fahad Maqbul Alamrani, and Adel Alatawi. 2024. "Matkowski-Type Functional Contractions under Locally Transitive Binary Relations and Applications to Singular Fractional Differential Equations" Fractal and Fractional 8, no. 1: 72. https://doi.org/10.3390/fractalfract8010072
APA StyleKhan, F. A., Eljaneid, N. H. E., Alamer, A., Alshaban, E., Alamrani, F. M., & Alatawi, A. (2024). Matkowski-Type Functional Contractions under Locally Transitive Binary Relations and Applications to Singular Fractional Differential Equations. Fractal and Fractional, 8(1), 72. https://doi.org/10.3390/fractalfract8010072