Next Article in Journal / Special Issue
New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain
Previous Article in Journal / Special Issue
Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Positive Solutions for a System of Fractional q-Difference Equations with Multi-Point Boundary Conditions

Department of Mathematics, Gh. Asachi Technical University, 700506 Iasi, Romania
Fractal Fract. 2024, 8(1), 70; https://doi.org/10.3390/fractalfract8010070
Submission received: 31 December 2023 / Revised: 17 January 2024 / Accepted: 19 January 2024 / Published: 21 January 2024

Abstract

:
We explore the existence, uniqueness, and multiplicity of positive solutions to a system of fractional q-difference equations that include fractional q-integrals. This investigation is carried out under coupled multi-point boundary conditions featuring q-derivatives and fractional q-derivatives of various orders. The proofs of our principal findings employ a range of fixed-point theorems, including the Guo–Krasnosel’skii fixed-point theorem, the Leggett–Williams fixed-point theorem, the Schauder fixed-point theorem, and the Banach contraction mapping principle.

1. Introduction

In recent decades, there has been a notable surge in the exploration of nonlocal boundary value problems, including those involving multi-point scenarios, within the realm of ordinary differential or difference equations. This area of research is experiencing rapid growth, spurred not only by theoretical interest but also by the practical applications of modeling various phenomena in engineering, physics, and life sciences. To illustrate, consider systems with feedback controls, such as the steady states of a thermostat. In this context, a second-order ordinary differential equation subject to a three-point boundary condition can capture the dynamics, where a controller at one end adjusts the heat based on the temperature recorded at another point. Another instance is found in the vibrations of a guy wire with a uniform cross-section composed of N parts of varying densities. Such scenarios can be effectively modeled as multi-point boundary value problems (refer to [1]).
In this paper, we will investigate the system of fractional q-difference equations
D q α u ( t ) + f t , u ( t ) , v ( t ) , I q δ 1 u ( t ) , I q γ 1 v ( t ) = 0 , t [ 0 , 1 ] , D q β v ( t ) + g t , u ( t ) , v ( t ) , I q δ 2 u ( t ) , I q γ 2 v ( t ) = 0 , t [ 0 , 1 ] ,
supplemented with the multi-point boundary conditions
D q i u ( 0 ) = 0 , i = 0 , , n 2 , D q ς u ( 1 ) = i = 1 a a i D q ϱ i u ( ξ i ) + i = 1 b b i D q σ i v ( ω i ) , D q i v ( 0 ) = 0 , i = 0 , , m 2 , D q ϑ v ( 1 ) = i = 1 c c i D q η i u ( ζ i ) + i = 1 d d i D q ρ i v ( θ i ) .
Here, q ( 0 , 1 ) , α , β R , α ( n 1 , n ] , β ( m 1 , m ] , n , m N , n , m 3 ; a , b , c , d N , 0 ϱ i ς < α 1 , i = 1 , , a , ς 1 , 0 η i ς , i = 1 , , c , 0 σ i ϑ < β 1 , i = 1 , , b , ϑ 1 , 0 ρ i ϑ , i = 1 , , d ; δ i , γ i > 0 , i = 1 , 2 ; ξ i , ω j , ζ k , θ ι ( 0 , 1 ) , and a i , b j , c k , d ι 0 for i = 1 , , a , j = 1 , , b , k = 1 , , c , ι = 1 , , d ; D q κ is the fractional q-derivative of order κ for κ = α , β , ς , ϑ , ϱ i , σ j , η k , ρ ι , i = 1 , , a , j = 1 , , b , k = 1 , , c , ι = 1 , , d ; D q i is the q-derivative of order i for i = 0 , , n 2 and i = 0 , , m 2 ; and I q κ is the fractional q-integral of order κ for κ = δ i , γ i , i = 1 , 2 .
We will establish conditions on the functions f and g under which problem (1),(2) possesses at least one positive solution. Our proofs will leverage several fixed point theorems, including the Guo–Krasnosel’skii fixed point theorem, the Leggett–Williams fixed point theorem, the Schauder fixed point theorem, and the Banach contraction mapping principle. Subsequently, we will provide references to pertinent papers that are closely related to our investigated problem. In [2], the authors studied the solvability for the system of nonlinear fractional q-difference equations
( D q α u ) ( t ) + P ( t , u ( t ) , v ( t ) , I q ω 1 u ( t ) , I q δ 1 v ( t ) ) = 0 , t ( 0 , 1 ) , ( D q β v ) ( t ) + Q ( t , u ( t ) , v ( t ) , I q ω 2 u ( t ) , I q δ 2 v ( t ) ) = 0 , t ( 0 , 1 ) ,
subject to the coupled nonlocal boundary conditions
D q i u ( 0 ) = 0 , i = 0 , , n 2 , D q ζ 0 u ( 1 ) = 0 1 D q ζ v ( t ) d q H ( t ) , t ( 0 , 1 ) , D q i v ( 0 ) = 0 , i = 0 , , z 2 , D q ξ 0 v ( 1 ) = 0 1 D q ξ u ( t ) d q K ( t ) , t ( 0 , 1 ) ,
where q ( 0 , 1 ) , α , β R , α ( n 1 , n ] , β ( z 1 , z ] , n , z N , n 2 , z 2 , ω i > 0 , δ i > 0 , i = 1 , 2 , ζ [ 0 , β 1 ) , ξ [ 0 , α 1 ) , ζ 0 [ 0 , α 1 ) , ξ 0 [ 0 , β 1 ) , and the integrals in (4) are Riemann–Stieltjes integrals with H - and K -bounded variation functions. By using varied fixed-point theorems, they obtained the existence and uniqueness results for the solutions of problem (3),(4). In [3], the authors examined the existence of solutions for the fractional q-difference equation with nonlinear integral conditions
( C D q α y ) ( t ) = f ( t , y ( t ) ) , for a . e . t [ 0 , T ] , y ( 0 ) y ( 0 ) = 0 T g ( s , y ( s ) d s , y ( T ) + y ( T ) = 0 T h ( s , y ( s ) ) d s ,
where T > 0 , q ( 0 , 1 ) , α ( 1 , 2 ] , and C D q α is the Caputo fractional q-derivative of order α . In the proof of the main result, they utilized measures of noncompactness and the Mönch fixed-point theorem. In [4], the authors investigated the existence, uniqueness, and multiplicity of positive solutions to the fractional q-difference equation with the nonlocal boundary conditions
( D q α u ) ( t ) + f ( t , u ( t ) ) = 0 , t ( 0 , 1 ) , ( D q i u ) ( 0 ) = 0 , i = 0 , , n 2 , ( D q β u ) ( 1 ) = a ( D q β u ) ( η ) ,
where q ( 0 , 1 ) , α ( n 1 , n ] , n > 2 , β [ 1 , n 2 ] , η ( 0 , 1 ) , a [ 0 , 1 ] , and f : [ 0 , 1 ] × [ 0 , ) [ 0 , ) satisfies Caratheodory-type conditions. In the proof of the main theorems, they applied several fixed-point theorems. In [5], by using the Guo–Krasnosel’skii fixed-point theorem, the author analyzed the existence of positive solutions to the fractional q-difference equation with the boundary conditions
( D q α y ) ( t ) = f ( t , y ( t ) ) , t ( 0 , 1 ) , y ( 0 ) = ( D q y ) ( 0 ) = 0 , ( D q y ) ( 1 ) = β ,
where q ( 0 , 1 ) , α ( 2 , 3 ] , β 0 , and f : [ 0 , 1 ] × R R is a nonnegative continuous function. In [6], the author explored the existence of nontrivial solutions to the nonlinear q-fractional boundary value problem
( D q α y ) ( t ) = f ( t , y ( t ) ) , t ( 0 , 1 ) , y ( 0 ) = y ( 1 ) = 0 ,
where q ( 0 , 1 ) , α ( 1 , 2 ] , and f : [ 0 , 1 ] × R R is a nonnegative continuous function. To prove the main finding, he also used the Guo–Krasnosel’skii fixed-point theorem. In [7], the authors proved the existence of solutions to the second-order q-difference equation with the boundary conditions
D q 2 u ( t ) = f ( t , u ( t ) , D q u ( t ) ) , t I , D q u ( 0 ) = 0 , D q u ( 1 ) = α u ( 1 ) ,
where q ( 0 , 1 ) , I = { q n , n N } { 0 , 1 } , f C ( I × R 2 , R ) , and α 0 is a fixed real number. In [8], the authors studied the existence of solutions to the second-order q-difference equation subject to the boundary conditions
D q 2 u ( t ) = f ( t , u ( t ) ) , t I , u ( 0 ) = η u ( T ) , D q u ( 0 ) = η D q u ( T ) ,
where I = [ 0 , T ] q N ¯ , q N ¯ = { q n , n N } { 0 } , T q N ¯ is a fixed constant, η 1 is a fixed real number, and f C ( I × R , R ) . Regarding additional papers that investigate systems of fractional q-difference equations with either coupled or uncoupled boundary conditions or that focus on fractional q-difference equations specifically, we refer to the following papers: [9,10,11,12,13,14,15,16].
The field of q-difference calculus, also known as quantum calculus, traces its origins back to the pioneering work of Jackson ([17,18]). To explore various applications of this discipline, readers are directed to the research of Ernst ([19]). The fractional q-difference calculus originated in the works of Al-Salam ([20]) and Agarwal ([21]). For advancements in this branch, encompassing q-analogs of integral and differential fractional operators, including properties like the fractional Leibniz q-formula, q-analogs of Cauchy’s formula, q-Laplace transform, q-Taylor’s formula, and q-analogs of the Mittag-Leffler function, refer to the papers [22,23,24,25,26].
The novel aspect of our problem (1),(2), compared to (3),(4) from [2], lies in the inclusion of generalized coupled boundary conditions (2) for the system of q-fractional difference equations in Equation (1). In this formulation, the q-fractional derivative of order ς for the unknown function u at the point 1 is contingent upon the q-fractional derivatives of various orders for both functions u and v at different points within the interval ( 0 , 1 ) . Similarly, the q-fractional derivative of order ϑ for the unknown function v at the point 1 is linked to the q-fractional derivatives of distinct orders for functions u and v at diverse points within the interval ( 0 , 1 ) . Furthermore, unlike the approach in the paper [2], we have explored the presence of positive solutions to our specific problem.
Our paper is organized as follows: Section 2 introduces key definitions and properties from q-calculus and fractional q-calculus, along with an existence result for the associated linear problem, the relevant Green functions, and their properties. Section 3 will then present the primary existence results for problem (1),(2), while Section 4 will provide illustrative examples to demonstrate the applicability of our theorems. Finally, Section 5 concludes the paper by summarizing the findings and presenting the overall conclusions.

2. Preliminary Results

In this section, we will introduce certain definitions and properties derived from q-calculus and fractional q-calculus. Additionally, we will outline some auxiliary findings that will play a pivotal role in the subsequent section.
Let q ( 0 , 1 ) . Define the number
[ a ] q = 1 q a 1 q , a R .
Next, to introduce the q-gamma function, we present the q-analog of the power function ( a b ) n with n N { 0 } :
( a b ) ( 0 ) = 1 , ( a b ) ( n ) = k = 0 n 1 ( a b q k ) , n N , a , b R .
For α R , define
( a b ) ( α ) = a α n = 0 1 b a q n n = 0 1 b a q α + n .
If b = 0 , then a ( α ) = a α .
The q-gamma function is defined by
Γ q ( α ) = ( 1 q ) ( α 1 ) ( 1 q ) α 1 = 1 ( 1 q ) α 1 n = 0 ( 1 q n + 1 ) n = 0 ( 1 q n + α ) , α R { 0 , 1 , 2 , } .
This function satisfies the relation Γ q ( α + 1 ) = [ α ] q Γ q ( α ) .
Definition 1.
The q-derivative of a real function f is defined by
( D q f ) ( t ) = f ( t ) f ( q t ) ( 1 q ) t , t 0 ; ( D q f ) ( 0 ) = lim t 0 ( D q f ) ( t ) .
Definition 2.
The q-derivatives of higher order of a real function f are defined by
( D q 0 f ) ( t ) = f ( t ) , ( D q n f ) ( t ) = D q ( D q n 1 f ) ( t ) , n N .
Definition 3.
The q-integral of a function f defined in the interval [ 0 , b ] is defined by
( I q f ) ( t ) = 0 t f ( s ) d q s = t ( 1 q ) n = 0 f ( t q n ) q n , t [ 0 , b ] .
Definition 4.
If a [ 0 , b ] and f is defined in the interval [ 0 , b ] , then its q-integral from a to b is given by
a b f ( s ) d q s = 0 b f ( s ) d q s 0 a f ( s ) d q s .
Definition 5.
The q-integrals of a function f of higher order are defined by
( I q 0 f ) ( t ) = f ( t ) , ( I q n f ) ( t ) = I q ( I q n 1 f ) ( t ) , n N .
The fundamental theorem of q-calculus says that ( D q I q f ) ( t ) = f ( t ) , and if f is continuous at t = 0 , then ( I q D q f ) ( t ) = f ( t ) f ( 0 ) . The properties of the operators D q and I q are presented in [6,27]. Below, we present some properties that will be used later.
Lemma 1.
For a , t , s , α R , and f : [ 0 , b ] R , we have
(i) [ a ( t s ) ] ( α ) = a α ( t s ) ( α ) ;
(ii) t D q ( t s ) ( α ) = [ α ] q ( t s ) ( α 1 ) ;
(iii) If α > 1 , then D q ( t α ) = [ α ] q t α 1 ;
(iv) If α > 0 , then I q ( t α ) = 1 [ α + 1 ] q t α + 1 ;
(v) If α > 0 and c d t , then ( t c ) ( α ) ( t d ) ( α ) ;
(vi)  t D q 0 t f ( t , s ) d q s ( t ) = 0 t t D q f ( t , s ) d q s + f ( q t , t ) , t [ 0 , b ] , where t D q denotes the q-derivative with respect to variable t .
Definition 6
([21]). Let f be a function defined on [ 0 , 1 ] . The fractional q-integral of the Riemann–Liouville type of order α 0 is defined by ( I q 0 f ) ( t ) = f ( t ) and
( I q α f ) ( t ) = 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) f ( s ) d q s , t [ 0 , 1 ] , α > 0 .
Definition 7
([24]). The fractional q-derivative of the Riemann–Liouville type of order α 0 is defined by ( D q 0 f ) ( t ) = f ( t ) and
( D q α f ) ( t ) = ( D q m I q m α f ) ( t ) , α > 0 ,
where m is the smallest integer greater than or equal to α.
Lemma 2
([21,24]). Let α , β 0 , γ > 0 , ζ [ 0 , γ ) , and λ 0 , and let f be a function defined on [ 0 , 1 ] . Then, the following relations are satisfied:
(a) ( I q β I q α f ) ( t ) = ( I q α + β f ) ( t ) ;
(b) ( D q α I q α f ) ( t ) = f ( t ) ;
(c) If α β > 0 , then ( D q β I q α f ) ( t ) = ( D q β I q β I q α β f ) ( t ) = ( I q α β f ) ( t ) ;
(d) D q ζ ( t γ ) = Γ q ( γ + 1 ) Γ q ( γ ζ + 1 ) t γ ζ ;
(e) I q α ( t λ ) = Γ q ( λ + 1 ) Γ q ( α + λ + 1 ) t α + λ .
Lemma 3
([6]). Let α > 0 and p be a positive integer. Then, the following relation holds:
( I q α D q p f ) ( t ) = ( D q p I q α f ) ( t ) k = 0 p 1 t α p + k Γ q ( α + k p + 1 ) ( D q k f ) ( 0 ) .
Lemma 4.
If w C [ 0 , 1 ] , then for κ > 0 , we have
| I q κ w ( t ) | w Γ q ( κ + 1 ) , t [ 0 , 1 ] ,
where  w = sup t [ 0 , 1 ] | w ( t ) | .
Proof. 
By Definition 6 and Lemma 2 (e) (with α = κ and λ = 0 ), we obtain
| I q κ w ( t ) | = 1 Γ q ( κ ) 0 t ( t q s ) ( κ 1 ) w ( s ) d q s = 1 Γ q ( κ ) t ( 1 q ) n = 0 ( t t q n + 1 ) ( κ 1 ) w ( t q n ) q n w 1 Γ q ( κ ) t ( 1 q ) n = 0 ( t t q n + 1 ) ( κ 1 ) q n = w | ( I q κ 1 ) ( t ) | = w t κ Γ q ( κ + 1 ) w Γ q ( κ + 1 ) , t [ 0 , 1 ] .
In what follows, we will study the linear problem associated with our problem (1),(2). We consider the system of fractional q-difference equations
( D q α u ) ( t ) + h ( t ) = 0 , t [ 0 , 1 ] , ( D q β v ) ( t ) + k ( t ) = 0 , t [ 0 , 1 ] ,
subject to boundary conditions (2), where h , k C [ 0 , 1 ] .
We define
Λ 1 = Γ q ( α ) Γ q ( α ς ) i = 1 a a i Γ q ( α ) Γ q ( α ϱ i ) ξ i α ϱ i 1 , Λ 2 = i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 , Λ 3 = i = 1 c c i Γ q ( α ) Γ q ( α η i ) ζ i α η i 1 , Λ 4 = Γ q ( β ) Γ q ( β ϑ ) i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 , Δ = Λ 1 Λ 4 Λ 2 Λ 3 .
Lemma 5.
If Δ 0 , then the solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] , of problem (25),(2) is given by
u ( t ) = 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + t α 1 Δ ( A Λ 4 + B Λ 2 ) , t [ 0 , 1 ] , v ( t ) = 1 Γ q ( β ) 0 t ( t q s ) ( β 1 ) k ( s ) d q s + t β 1 Δ ( B Λ 1 + A Λ 3 ) , t [ 0 , 1 ] ,
where
A = 1 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s i = 1 a a i Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s , B = 1 Γ q ( β ϑ ) 0 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s i = 1 c c i Γ q ( α η i ) 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s i = 1 d d i Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s .
Proof. 
We apply I q α and I q β , respectively, to the equations of system (25). Then, by Lemma 2 (a),(b) and Lemma 3, we obtain
u ( t ) = I q α h ( t ) + a ˜ 1 t α 1 + a ˜ 2 t α 2 + + a ˜ n t α n = 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + a ˜ 1 t α 1 + a ˜ 2 t α 2 + + a ˜ n t α n , t [ 0 , 1 ] , v ( t ) = I q β k ( t ) + b ˜ 1 t β 1 + b ˜ 2 t β 2 + + b ˜ m t β m = 1 Γ q ( β ) 0 t ( t q s ) ( β 1 ) k ( s ) d q s + b ˜ 1 t β 1 + b ˜ 2 t β 2 + + b ˜ m t β m , t [ 0 , 1 ] ,
for some a ˜ i , b ˜ j R , i = 1 , , n , j = 1 , , m .
From the conditions D q i u ( 0 ) = 0 for i = 0 , , n 2 , and D q j v ( 0 ) = 0 for j = 0 , , m 2 , we deduce that a ˜ i = 0 , i = 2 , , n , and b ˜ j = 0 , j = 2 , , m . So, the solution (29) becomes
u ( t ) = a ˜ 1 t α 1 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s , t [ 0 , 1 ] , v ( t ) = b ˜ 1 t β 1 1 Γ q ( β ) 0 t ( t q s ) ( β 1 ) k ( s ) d q s , t [ 0 , 1 ] .
On the other hand, we find
D q κ u ( t ) = a ˜ 1 Γ q ( α ) Γ q ( α κ ) t α κ 1 1 Γ q ( α κ ) 0 t ( t q s ) ( α κ 1 ) h ( s ) d q s ,
for κ = ς , ϱ i , η j , i = 1 , , a , j = 1 , , c , and
D q κ v ( t ) = b ˜ 1 Γ q ( β ) Γ q ( β κ ) t β κ 1 1 Γ q ( β κ ) 0 t ( t q s ) ( β κ 1 ) k ( s ) d q s ,
for κ = ϑ , σ i , ρ j , i = 1 , , b , j = 1 , , d .
By using relations (31) and (32), the boundary conditions D q ς u ( 1 ) = i = 1 a a i D q ϱ i u ( ξ i ) + i = 1 b b i D q σ i v ( ω i ) and D q ϑ v ( 1 ) = i = 1 c c i D q η i u ( ζ i ) + i = 1 d d i D q ρ i v ( θ i ) become
a ˜ 1 Γ q ( α ) Γ q ( α ς ) 1 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s = i = 1 a a i a ˜ 1 Γ q ( α ) Γ q ( α ϱ i ) ξ i α ϱ i 1 1 Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s + i = 1 b b i b ˜ 1 Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 1 Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s , b ˜ 1 Γ q ( β ) Γ ( β ϑ ) 1 Γ q ( β ϑ ) 0 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s = i = 1 c c i a ˜ 1 Γ q ( α ) Γ q ( α η i ) ζ i α η i 1 1 Γ q ( α η i ) 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + i = 1 d d i b ˜ 1 Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 1 Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s .
or
a ˜ 1 Γ q ( α ) Γ q ( α ς ) i = 1 a a i Γ q ( α ) Γ q ( α ϱ i ) ξ i α ϱ i 1 b ˜ 1 i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 = 1 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s i = 1 a a i Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s , a ˜ 1 i = 1 c c i Γ q ( α ) Γ q ( α η i ) ζ i α η i 1 + b ˜ 1 Γ q ( β ) Γ q ( β ϑ ) i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 = 1 Γ q ( β ϑ ) 0 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s i = 1 c c i Γ q ( α η i ) 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s i = 1 d d i Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s .
The determinant of system (34) in the unknowns a ˜ 1 and b ˜ 1 is Δ , which, by the assumption of this lemma, is nonzero. So, system (34) has the unique solution
a ˜ 1 = 1 Δ ( A Λ 4 + B Λ 2 ) , b ˜ 1 = 1 Δ ( B Λ 1 + A Λ 3 ) .
By substituting (35) into (30), we obtain the solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] , of problem (25),(2) given by (27). □
Lemma 6.
If Δ 0 , then the solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] , of problem (25),(2) can be written as
u ( t ) = 0 1 G 1 ( t , q s ) h ( s ) d q s + 0 1 G 2 ( t , q s ) k ( s ) d q s , t [ 0 , 1 ] , v ( t ) = 0 1 G 3 ( t , q s ) h ( s ) d q s + 0 1 G 4 ( t , q s ) k ( s ) d q s , t [ 0 , 1 ] ,
where
G 1 ( t , s ) = g 1 ( t , s ) + t α 1 Δ Λ 4 i = 1 a a i g 1 i ( ξ i , s ) + Λ 2 i = 1 c c i g 2 i ( ζ i , s ) , G 2 ( t , s ) = t α 1 Δ Λ 4 i = 1 b b i g 3 i ( ω i , s ) + Λ 2 i = 1 d d i g 4 i ( θ i , s ) , G 3 ( t , s ) = t β 1 Δ Λ 3 i = 1 a a i g 1 i ( ξ i , s ) + Λ 1 i = 1 c c i g 2 i ( ζ i , s ) , G 4 ( t , s ) = g 2 ( t , s ) + t β 1 Δ Λ 3 i = 1 b b i g 3 i ( ω i , s ) + Λ 1 i = 1 d d i g 4 i ( θ i , s ) ,
and
g 1 ( t , s ) = 1 Γ q ( α ) t α 1 ( 1 s ) ( α ς 1 ) ( t s ) ( α 1 ) , 0 s t 1 , t α 1 ( 1 s ) ( α ς 1 ) , 0 t s 1 , g 2 ( t , s ) = 1 Γ q ( β ) t β 1 ( 1 s ) ( β ϑ 1 ) ( t s ) ( β 1 ) , 0 s t 1 , t β 1 ( 1 s ) ( β ϑ 1 ) , 0 t s 1 , g 1 i ( t , s ) = 1 Γ q ( α ϱ i ) t α ϱ i 1 ( 1 s ) ( α ς 1 ) ( t s ) ( α ϱ i 1 ) , 0 s t 1 , t α ϱ i 1 ( 1 s ) ( α ς 1 ) , 0 t s 1 , g 2 j ( t , s ) = 1 Γ q ( α η j ) t α η j 1 ( 1 s ) ( α ς 1 ) ( t s ) ( α η j 1 ) , 0 s t 1 , t α η j 1 ( 1 s ) ( α ς 1 ) , 0 t s 1 , g 3 k ( t , s ) = 1 Γ q ( β σ k ) t β σ k 1 ( 1 s ) ( β ϑ 1 ) ( t s ) ( β σ k 1 ) , 0 s t 1 , t β σ k 1 ( 1 s ) ( β ϑ 1 ) , 0 t s 1 , g 4 ι ( t , s ) = 1 Γ q ( β ρ ι ) t β ρ ι 1 ( 1 s ) ( β ϑ 1 ) ( t s ) ( β ρ ι 1 ) , 0 s t 1 , t β ρ ι 1 ( 1 s ) ( β ϑ 1 ) , 0 t s 1 ,
for t , s [ 0 , 1 ] , i = 1 , , a , j = 1 , , c , k = 1 , , b , ι = 1 , , d .
Proof. 
For u ( t ) , we deduce
u ( t ) = 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + t α 1 Δ Λ 4 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s t α 1 Δ Λ 4 i = 1 a a i Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s t α 1 Δ Λ 2 i = 1 c c i Γ q ( α η i ) 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + t α 1 Δ Λ 4 i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s + Λ 2 Γ q ( β ϑ ) 0 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s Λ 2 i = 1 d d i Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s = t α 1 Γ q ( α ) 0 t ( 1 q s ) ( α ς 1 ) h ( s ) d q s 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + 1 Γ q ( α ) t 1 t α 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s t α 1 Γ q ( α ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s + t α 1 Δ Λ 4 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s t α 1 Δ Λ 4 i = 1 a a i Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s t α 1 Δ Λ 2 i = 1 c c i Γ q ( α η i ) 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + t α 1 Δ Λ 4 i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s + Λ 2 Γ q ( β ϑ ) 0 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s Λ 2 i = 1 d d i Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s , t [ 0 , 1 ] .
Amplifying the fourth term on the right-hand side of the above relation by Δ = Λ 1 Λ 4 Λ 2 Λ 3 , we obtain
u ( t ) = 1 Γ q ( α ) 0 1 t α 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + t α 1 Δ Γ q ( α ) Γ q ( α ς ) Γ q ( β ) Γ q ( β ϑ ) 1 Γ q ( α ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s + Γ q ( β ) Γ q ( β ϑ ) i = 1 a a i Γ q ( α ) Γ q ( α ϱ i ) ξ i α ϱ i 1 1 Γ q ( α ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s + Γ q ( α ) Γ q ( α ς ) i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 1 Γ q ( α ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s i = 1 a a i Γ q ( α ) Γ q ( α ϱ i ) ξ i α ϱ i 1 i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 1 Γ q ( α ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s + i = 1 c c i Γ q ( α ) Γ q ( α η i ) ζ i α η i 1 i = 1 b b i Γ q ( β ) Γ q ( β σ i ) η i β η i 1 1 Γ q ( α ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s + Γ q ( β ) Γ q ( β ϑ ) 1 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 1 Γ q ( α ς ) 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s Γ q ( β ) Γ q ( β ϑ ) i = 1 a a i Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s + i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 i = 1 a a i Γ q ( α ϱ i ) 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s i = 1 b b i Γ q ( β ) Γ q ( β σ i ) η i β η i 1 i = 1 c c i Γ q ( α η i ) 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + t α 1 Δ Γ q ( β ) Γ q ( β ϑ ) i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q ( s ) + i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s + i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 1 Γ q ( β ϑ ) 0 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 i = 1 d d i Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s = 1 Γ q ( α ) 0 1 t α 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + t α 1 Δ Γ q ( β ) Γ q ( β ϑ ) i = 1 a a i Γ q ( α ϱ i ) ξ i α ϱ i 1 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 i = 1 a a i Γ q ( α ϱ i ) ξ i α ϱ i 1 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s + i = 1 b b i Γ q ( β ) Γ q ( β σ i ) η i β η i 1 i = 1 c c i Γ q ( α η i ) ζ i α η i 1 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + t α 1 Δ i = 1 b b i Γ q ( β ) Γ q ( β ϑ ) 1 Γ q ( β σ i ) 0 1 ω i β σ i 1 ( 1 q s ) ( β i ϑ 1 ) k ( s ) d q s 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 i = 1 b b i Γ q ( β σ i ) 0 1 ω i β σ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s + i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 i = 1 b b i Γ q ( β σ i ) 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s + i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 i = 1 d d i Γ q ( β ρ i ) 0 1 θ i β ρ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 i = 1 d d i Γ q ( β ρ i ) 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s , t [ 0 , 1 ] .
So, we deduce
u ( t ) = 1 Γ q ( α ) 0 1 t α 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + t α 1 Δ Γ q ( β ) Γ q ( β ϑ ) i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 × i = 1 a a i Γ q ( α ϱ i ) ξ i α ϱ i 1 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s + i = 1 b b i Γ q ( β ) Γ q ( β σ i ) η i β η i 1 × i = 1 c c i Γ q ( α η i ) ζ i α η i 1 0 1 ( 1 q s ) ( α ζ 1 ) h ( s ) d q s 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + t α 1 Δ i = 1 b b i Γ q ( β ) Γ q ( β ϑ ) 1 Γ q ( β σ i ) 0 1 ω i β σ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s i = 1 d d i Γ q ( β ) Γ q ( β ρ i ) θ i β ρ i 1 × i = 1 b b i Γ q ( β σ i ) 0 1 ω i β σ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s + i = 1 b b i Γ q ( β ) Γ q ( β σ i ) ω i β σ i 1 × i = 1 d d i Γ q ( β ρ i ) 0 1 θ i β ρ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s = 1 Γ q ( α ) 0 1 t α 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 1 Γ q ( α ) 0 t ( t q s ) ( α 1 ) h ( s ) d q s + t α 1 Δ Λ 4 i = 1 a a i Γ q ( α ϱ i ) ξ i α ϱ i 1 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 0 ξ i ( ξ i q s ) ( α ϱ i 1 ) h ( s ) d q s + Λ 2 i = 1 c c i Γ q ( α η i ) ζ i α η i 1 0 1 ( 1 q s ) ( α ς 1 ) h ( s ) d q s 0 ζ i ( ζ i q s ) ( α η i 1 ) h ( s ) d q s + t α 1 Δ Λ 4 i = 1 b b i Γ q ( β σ i ) 0 1 ω i β σ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s 0 ω i ( ω i q s ) ( β σ i 1 ) k ( s ) d q s + Λ 2 i = 1 d d i Γ q ( β ρ i ) 0 1 θ i β ρ i 1 ( 1 q s ) ( β ϑ 1 ) k ( s ) d q s 0 θ i ( θ i q s ) ( β ρ i 1 ) k ( s ) d q s .
Therefore, we obtain
u ( t ) = 0 1 g 1 ( t , q s ) + t α 1 Δ Λ 4 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 2 i = 1 c c i g 2 i ( ζ i , q s ) h ( s ) d q s + t α 1 Δ 0 1 Λ 4 i = 1 b b i g 3 i ( ω i , q s ) + Λ 2 i = 1 d d i g 4 i ( θ i , q s ) k ( s ) d q s = 0 1 G 1 ( t , q s ) h ( s ) d q s + 0 1 G 2 ( t , q s ) k ( s ) d q s , t [ 0 , 1 ] ,
where G 1 , G 2 , g 1 , g 1 i , i = 1 , , a , g 2 j , j = 1 , , c , g 3 k , k = 1 , , b , and g 4 ι , ι = 1 , , d , are given by (37) and (38).
In a similar manner, we find
v ( t ) = t β 1 Δ 0 1 Λ 3 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 1 i = 1 c c i g 2 i ( ζ i , q s ) h ( s ) d q s + 0 1 g 2 ( t , q s ) + t β 1 Δ Λ 3 i = 1 b b i g 3 i ( ω i , q s ) + Λ 1 i = 1 d d i g 4 i ( θ i , q s ) k ( s ) d q s = 0 1 G 3 ( t , q s ) h ( s ) d q s + 0 1 G 4 ( t , q s ) k ( s ) d q s , t [ 0 , 1 ] ,
where G 3 , G 4 , and g 2 are given by (37) and (38). So, we deduce the formulas in (36) for the solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] , of problem (25),(2). □
With a similar proof to that of Lemma 12 from [4], we obtain the next result.
Lemma 7.
The functions g 1 , g 2 , g 1 i , i = 1 , , a , g 2 j , j = 1 , , c , g 3 k , k = 1 , , b , and g 4 ι , ι = 1 , , d , have the following properties:
(a) g 1 ( t , q s ) 0 , g 2 ( t , q s ) 0 , t , s [ 0 , 1 ] ;
(b) g 1 ( t , q s ) g 1 ( 1 , q s ) , g 2 ( t , q s ) g 2 ( 1 , q s ) , t , s [ 0 , 1 ] ;
(c) g 1 ( t , q s ) t α 1 g 1 ( 1 , q s ) , g 2 ( t , q s ) t β 1 g 2 ( 1 , q s ) , t , s [ 0 , 1 ] ;
(d) g 1 i ( t , q s ) 0 , g 2 j ( t , q s ) 0 , g 3 k ( t , q s ) 0 , g 4 ι ( t , q s ) 0 , t , s [ 0 , 1 ] , i = 1 , , a , j = 1 , , c , k = 1 , , b , ι = 1 , , d .
Remark 1.
If ϖ = q n with n N , then we obtain
min t [ ϖ , 1 ] g 1 ( t , q s ) ϖ α 1 g 1 ( 1 , q s ) , min t [ ϖ , 1 ] g 2 ( t , q s ) ϖ β 1 g 2 ( 1 , q s ) , s [ 0 , 1 ] .
Lemma 8.
If Λ 1 > 0 , Λ 4 > 0 , and Δ > 0 , then the functions G i , i = 1 , , 4 satisfy the following inequalities:
(a) t α 1 G 1 ( 1 , q s ) G 1 ( t , q s ) G 1 ( 1 , q s ) , t , s [ 0 , 1 ] ;
(b) t α 1 G 2 ( 1 , q s ) = G 2 ( t , q s ) G 2 ( 1 , q s ) , t , s [ 0 , 1 ] ;
(c) t β 1 G 3 ( 1 , q s ) = G 3 ( t , q s ) G 3 ( 1 , q s ) , t , s [ 0 , 1 ] ;
(d) t β 1 G 4 ( 1 , q s ) G 4 ( t , q s ) G 4 ( 1 , q s ) , t , s [ 0 , 1 ] .
Proof. 
( a ) ( d ) By using Lemma 7, we deduce the following for all t , s [ 0 , 1 ] :
G 1 ( t , q s ) = g 1 ( t , q s ) + t α 1 Δ Λ 4 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 2 i = 1 c c i g 2 i ( ζ i , q s ) g 1 ( 1 , q s ) + 1 Δ Λ 4 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 2 i = 1 c c i g 2 i ( ζ i , q s ) = G 1 ( 1 , q s ) ; G 1 ( t , q s ) t α 1 g 1 ( 1 , q s ) + t α 1 Δ Λ 4 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 2 i = 1 c c i g 2 i ( ζ i , q s ) = t α 1 G 1 ( 1 , q s ) ; G 2 ( t , q s ) = t α 1 Δ Λ 4 i = 1 b b i g 3 i ( ω i , q s ) + Λ 2 i = 1 d d i g 4 i ( θ i , q s ) 1 Δ Λ 4 i = 1 b b i g 3 i ( ω i , q s ) + Λ 2 i = 1 d d i g 4 i ( θ i , q s ) = G 2 ( 1 , q s ) ; G 2 ( t , q s ) = t α 1 G 2 ( 1 , q s ) ; G 3 ( t , q s ) = t β 1 Δ Λ 3 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 1 i = 1 c c i g 2 i ( ζ i , q s ) 1 Δ Λ 3 i = 1 a a i g 1 i ( ξ i , q s ) + Λ 1 i = 1 c c i g 2 i ( ζ i , q s ) = G 3 ( 1 , q s ) ; G 3 ( t , q s ) = t β 1 G 3 ( 1 , q s ) ; G 4 ( t , q s ) = g 2 ( t , q s ) + t β 1 Δ Λ 3 i = 1 b b i g 3 i ( ω i , q s ) + Λ 1 i = 1 d d i g 4 i ( θ i , q s ) g 2 ( 1 , q s ) + 1 Δ Λ 3 i = 1 b b i g 3 i ( ω i , q s ) + Λ 1 i = 1 d d i g 4 i ( θ i , q s ) = G 4 ( 1 , q s ) ; G 4 ( t , q s ) t β 1 g 2 ( 1 , q s ) + t β 1 Δ Λ 3 i = 1 b b i g 3 i ( ω i , q s ) + Λ 1 i = 1 d d i g 4 i ( θ i , q s ) = t β 1 G 4 ( 1 , q s ) .
  □
Lemma 9.
If  Λ 1 > 0 , Λ 4 > 0 , Δ > 0 , h ( t ) 0 , and  k ( t ) 0  for all  t [ 0 , 1 ] then the solution  ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] of problem (25),(2) satisfies the inequalities  u ( t ) 0  and  v ( t ) 0  for all  t [ 0 , 1 ]  and  u ( t ) t α 1 u ( τ )  and  v ( t ) t β 1 v ( τ )  for all  t , τ [ 0 , 1 ] .
Proof. 
We can easily verify that u ( t ) 0 and v ( t ) 0 for all t [ 0 , 1 ] . In addition, by using Lemma 8, we obtain
u ( t ) = 0 1 G 1 ( t , q s ) h ( s ) d q s + 0 1 G 2 ( t , q s ) k ( s ) d q s 0 1 G 1 ( 1 , q s ) h ( s ) d q s + 0 1 G 2 ( 1 , q s ) k ( s ) d q s , t [ 0 , 1 ] , u ( t ) 0 1 t α 1 G 1 ( 1 , q s ) h ( s ) d q s + 0 1 t α 1 G 2 ( 1 , q s ) k ( s ) d q s = t α 1 0 1 G 1 ( 1 , q s ) h ( s ) d q s + 0 1 G 2 ( 1 , q s ) k ( s ) d q s t α 1 u ( τ ) , t , τ [ 0 , 1 ] , v ( t ) = 0 1 G 3 ( t , q s ) h ( s ) d q s + 0 1 G 4 ( t , q s ) k ( s ) d q s 0 1 G 3 ( 1 , q s ) h ( s ) d q s + 0 1 G 4 ( 1 , q s ) k ( s ) d q s , t [ 0 , 1 ] ,
v ( t ) 0 1 t β 1 G 3 ( 1 , q s ) h ( s ) d q s + 0 1 t β 1 G 4 ( 1 , q s ) k ( s ) d q s = t β 1 0 1 G 3 ( 1 , q s ) h ( s ) d q s + 0 1 G 4 ( 1 , q s ) k ( s ) d q s t β 1 v ( τ ) , t , τ [ 0 , 1 ] .
Remark 2.
By Lemma 9, we find u ( t ) t α 1 u and v ( t ) t β 1 v for all t [ 0 , 1 ] . In addition, by Lemma 8, for ϖ = q n with n N , we have
min t [ ϖ , 1 ] G 1 ( t , q s ) ϖ α 1 G 1 ( 1 , q s ) , s [ 0 , 1 ] ; min t [ ϖ , 1 ] G 2 ( t , q s ) = ϖ α 1 G 2 ( 1 , q s ) , s [ 0 , 1 ] ; min t [ ϖ , 1 ] G 3 ( t , q s ) = ϖ β 1 G 3 ( 1 , q s ) , s [ 0 , 1 ] ; min t [ ϖ , 1 ] G 4 ( t , q s ) ϖ β 1 G 4 ( 1 , q s ) , s [ 0 , 1 ] ,
and so
min t [ ϖ , 1 ] u ( t ) ϖ α 1 u , min t [ ϖ , 1 ] v ( t ) ϖ β 1 v .

3. Main Results

In this section, we will outline the results concerning the existence of positive solutions for our given problem (1),(2).
Initially, we state our primary assumptions:
(H1)
q ( 0 , 1 ) , α , β R , α ( n 1 , n ] , β ( m 1 , m ] , n , m N , n , m 3 ; a , b , c , d N , 0 ϱ i ς < α 1 , i = 1 , , a , ς 1 , 0 η i ς , i = 1 , , c , 0 σ i ϑ < β 1 , i = 1 , , b , ϑ 1 , 0 ρ i ϑ , i = 1 , , d ; δ i , γ i > 0 , i = 1 , 2 ; ξ i , ω j , ζ k , θ ι ( 0 , 1 ) , a i , b j , c k , d ι 0 for i = 1 , , a , j = 1 , , b , k = 1 , , c , ι = 1 , , d ; Λ 1 > 0 , Λ 4 > 0 , Δ > 0 (given by (26)).
(H2)
f , g : [ 0 , 1 ] × R + 4 R + are continuous functions ( R + = [ 0 , ) ).
Problem (1),(2) can be expressed equivalently to the following system of fractional q-integral equations:
u ( t ) = 0 1 G 1 ( t , q s ) f ( s , u ( s ) , v ( s ) , I q δ 1 u ( s ) , I q γ 1 v ( s ) ) d q s + 0 1 G 2 ( t , q s ) g ( s , u ( s ) , v ( s ) , I q δ 2 u ( s ) , I q γ 2 v ( s ) ) d q s , t [ 0 , 1 ] , v ( t ) = 0 1 G 3 ( t , q s ) f ( s , u ( s ) , v ( s ) , I q δ 1 u ( s ) , I q γ 1 v ( s ) ) d q s + 0 1 G 4 ( t , q s ) g ( s , u ( s ) , v ( s ) , I q δ 2 u ( s ) , I q γ 2 v ( s ) ) d q s , t [ 0 , 1 ] .
Let X = C [ 0 , 1 ] be the Banach space endowed with the norm u = sup t [ 0 , 1 ] | u ( t ) | , and let Y = X × X be the Banach space with the norm ( u , v ) Y = u + v . We also introduce the cone P Y by
P = { ( u , v ) Y , u ( t ) t α 1 u , v ( t ) t β 1 v , t [ 0 , 1 ] } .
We now define the operator A : P Y , A ( u , v ) = ( A 1 ( u , v ) , A 2 ( u , v ) ) , for ( u , v ) P , where A 1 , A 2 : P X are given by
A 1 ( u , v ) ( t ) = 0 1 G 1 ( t , q s ) f ( s , u ( s ) , v ( s ) , I q δ 1 u ( s ) , I q γ 1 v ( s ) ) d q s + 0 1 G 2 ( t , q s ) g ( s , u ( s ) , v ( s ) , I q δ 2 u ( s ) , I q γ 2 v ( s ) ) d q s , A 2 ( u , v ) ( t ) = 0 1 G 3 ( t , q s ) f ( s , u ( s ) , v ( s ) , I q δ 1 u ( s ) , I q γ 1 v ( s ) ) d q s + 0 1 G 4 ( t , q s ) g ( s , u ( s ) , v ( s ) , I q δ 2 u ( s ) , I q γ 2 v ( s ) ) d q s ,
for all t [ 0 , 1 ] and ( u , v ) P .
We observe that ( u , v ) constitutes a positive solution to problem (49) (or equivalently, (1),(2)) if and only if it serves as a fixed point for the operator A . Consequently, our subsequent analysis will focus on examining the existence of fixed points for A .
Under assumptions ( H 1 ) and ( H 2 ) , using standard arguments, we deduce that operator A is completely continuous. In addition, by Lemma 9, we obtain
A 1 ( u , v ) ( t ) t α 1 A 1 ( u , v ) , A 2 ( u , v ) ( t ) t β 1 A 1 ( u , v ) , t [ 0 , 1 ] ,
that is, A ( P ) P .
For ϖ = q n , with n N , we introduce the constants
L 1 = 0 1 G 1 ( 1 , q s ) d q s , L 2 = 0 1 G 2 ( 1 , q s ) d q s , L 3 = 0 1 G 3 ( 1 , q s ) d q s , L 4 = 0 1 G 2 ( 1 , q s ) d q s , M 1 = L 1 + L 3 , M 2 = L 2 + L 4 , L ˜ 1 = ϖ 1 G 1 ( 1 , q s ) d q s , L ˜ 2 = ϖ 1 G 2 ( 1 , q s ) d q s , L ˜ 3 = ϖ 1 G 3 ( 1 , q s ) d q s , L ˜ 4 = ϖ 1 G 4 ( 1 , q s ) d q s , M ˜ 1 = ϖ α 1 L ˜ 1 + ϖ β 1 L ˜ 3 , M ˜ 2 = ϖ α 1 L ˜ 2 + ϖ β 1 L ˜ 4 .
We remark that L 2 , L 3 , L ˜ 2 , and L ˜ 3 0 and L 1 ,   L 4 ,   L ˜ 1 ,   L ˜ 4 ,   M 1 ,   M 2 ,   M ˜ 1 ,  and  M ˜ 2 > 0 .
Our initial existence result for positive solutions to problem (1),(2) relies on the Guo–Krasnosel’skii fixed-point theorem (refer to [28]).
Theorem 1.
Let ϖ = q n with n N . Assume that ( H 1 ) and ( H 2 ) are satisfied. In addition, we suppose that there exist two positive constants r 2 > r 1 > 0 and the constants σ ˜ 1 ( 0 , M 1 1 ] , σ ˜ 2 ( 0 , M 2 1 ] , σ ˜ 3 [ M ˜ 1 1 , ) , and σ ˜ 4 [ M ˜ 2 1 , ) such that
  • (H3) f ( t , u , v , x , y ) σ ˜ 3 r 1 2 , t [ ϖ , 1 ] , u , v 0 , u + v r 1 , x 0 , r 1 Γ q ( δ 1 + 1 ) , y 0 , r 1 Γ q ( γ 1 + 1 ) , g ( t , u , v , x , y ) σ ˜ 4 r 1 2 , t [ ϖ , 1 ] , u , v 0 , u + v r 1 , x 0 , r 1 Γ q ( δ 2 + 1 ) , y 0 , r 1 Γ q ( γ 2 + 1 ) ;
  • (H4) f ( t , u , v , x , y ) σ ˜ 1 r 2 2 , t [ 0 , 1 ] , u , v 0 , u + v r 2 , x 0 , r 2 Γ q ( δ 1 + 1 ) , y 0 , r 2 Γ q ( γ 1 + 1 ) , g ( t , u , v , x , y ) σ ˜ 2 r 2 2 , t [ 0 , 1 ] , u , v 0 , u + v r 2 , x 0 , r 2 Γ q ( δ 2 + 1 ) , y 0 , r 2 Γ q ( γ 2 + 1 ) .
Then, problem (1),(2) has at least one positive solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] such that  ( u , v ) P  and  r 1 ( u , v ) Y r 2 .
Proof. 
We introduce the set Ω 2 = { ( u , v ) Y , ( u , v ) Y < r 2 } . Then, for ( u , v ) P Ω 2 , we have u + v = r 2 , so u ( t ) + v ( t ) r 2 for all t [ 0 , 1 ] . Because u r 2 and v r 2 , by Lemma 4, we find | I q δ i u ( s ) | r 2 Γ q ( δ i + 1 ) , and | I q γ j v ( s ) | r 2 Γ q ( γ j + 1 ) for all s [ 0 , 1 ] , i , j = 1 , 2 . We define F u v δ 1 γ 1 ( s ) = f ( s , u ( s ) , v ( s ) , I q δ 1 u ( s ) , I q γ 1 v ( s ) ) and G u v δ 2 γ 2 ( s ) = g ( s , u ( s ) , v ( s ) , I q δ 2 u ( s ) , I q γ 2 v ( s ) ) for s [ 0 , 1 ] .
Then, by Lemma 8 and ( H 4 ) , we obtain
A 1 ( u , v ) = sup t [ 0 , 1 ] | A 1 ( u , v ) ( t ) | sup t [ 0 , 1 ] 0 1 G 1 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + sup t [ 0 , 1 ] 0 1 G 2 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s 0 1 sup t [ 0 , 1 ] G 1 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 sup t [ 0 , 1 ] G 2 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s 0 1 G 1 ( 1 , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 2 ( 1 , q s ) G u v δ 2 γ 2 ( s ) d q s σ ˜ 1 r 2 2 0 1 G 1 ( 1 , q s ) d q s + σ ˜ 2 r 2 2 0 1 G 2 ( 1 , q s ) d q s = σ ˜ 1 r 2 2 L 1 + σ ˜ 2 r 2 2 L 2 = σ ˜ 1 L 1 2 + σ ˜ 2 L 2 2 r 2 ,
and
A 2 ( u , v ) = sup t [ 0 , 1 ] | A 2 ( u , v ) ( t ) | sup t [ 0 , 1 ] 0 1 G 3 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + sup t [ 0 , 1 ] 0 1 G 4 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s 0 1 sup t [ 0 , 1 ] G 3 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 sup t [ 0 , 1 ] G 4 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s 0 1 G 3 ( 1 , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 4 ( 1 , q s ) G u v δ 2 γ 2 ( s ) d q s σ ˜ 1 r 2 2 0 1 G 3 ( 1 , q s ) d q s + σ ˜ 2 r 2 2 0 1 G 4 ( 1 , q s ) d q s = σ ˜ 1 r 2 2 L 3 + σ ˜ 2 r 2 2 L 4 = σ ˜ 1 L 3 2 + σ ˜ 2 L 4 2 r 2 .
Then, we deduce
A ( u , v ) Y = A 1 ( u , v ) + A 2 ( u , v ) σ ˜ 1 ( L 1 + L 3 ) 2 + σ ˜ 2 ( L 2 + L 4 ) 2 r 2 = σ ˜ 1 M 1 2 + σ ˜ 2 M 2 2 r 2 r 2 ,
that is,
A ( u , v ) Y ( u , v ) Y , ( u , v ) P Ω 2 .
Now, we define the set Ω 1 = { ( u , v ) Y , ( u , v ) Y < r 1 } . Then, for ( u , v ) P Ω 1 , we have u + v = r 1 , so u ( t ) + v ( t ) r 1 for all t [ 0 , 1 ] .
Therefore, by Lemma 8 and ( H 3 ) , we obtain
A 1 ( u , v ) = sup t [ 0 , 1 ] | A 1 ( u , v ) ( t ) | = sup t [ 0 , 1 ] 0 1 G 1 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 2 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s inf t [ ϖ , 1 ] 0 1 G 1 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 2 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s inf t [ ϖ , 1 ] 0 1 G 1 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + inf t [ ϖ , 1 ] 0 1 G 2 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s 0 1 inf t [ ϖ , 1 ] G 1 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 inf t [ ϖ , 1 ] G 2 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s ϖ 1 ϖ α 1 G 1 ( 1 , q s ) F u v δ 1 γ 1 ( s ) d q s + ϖ 1 ϖ α 1 G 2 ( 1 , q s ) G u v δ 2 γ 2 ( s ) d q s σ ˜ 3 r 1 ϖ α 1 2 ϖ 1 G 1 ( 1 , q s ) d q s + σ ˜ 4 r 1 ϖ α 1 2 ϖ 1 G 2 ( 1 , q s ) d q s = σ ˜ 3 r 1 ϖ α 1 L ˜ 1 2 + σ ˜ 4 r 1 ϖ α 1 L ˜ 2 2 = σ ˜ 3 ϖ α 1 L ˜ 1 2 + σ ˜ 4 ϖ α 1 L ˜ 2 2 r 1 ,
and
A 2 ( u , v ) = sup t [ 0 , 1 ] | A 2 ( u , v ) ( t ) | = sup t [ 0 , 1 ] 0 1 G 3 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 4 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s inf t [ ϖ , 1 ] 0 1 G 3 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 4 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s inf t [ ϖ , 1 ] 0 1 G 3 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + inf t [ ϖ , 1 ] 0 1 G 4 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s 0 1 inf t [ ϖ , 1 ] G 3 ( t , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 inf t [ ϖ , 1 ] G 4 ( t , q s ) G u v δ 2 γ 2 ( s ) d q s ϖ 1 ϖ β 1 G 3 ( 1 , q s ) F u v δ 1 γ 1 ( s ) d q s + ϖ 1 ϖ β 1 G 4 ( 1 , q s ) G u v δ 2 γ 2 ( s ) d q s σ ˜ 3 r 1 ϖ β 1 2 ϖ 1 G 3 ( 1 , q s ) d q s + σ ˜ 4 r 1 ϖ β 1 2 ϖ 1 G 4 ( 1 , q s ) d q s = σ ˜ 3 r 1 ϖ β 1 L ˜ 3 2 + σ ˜ 4 r 1 ϖ β 1 L ˜ 4 2 = σ ˜ 3 ϖ β 1 L ˜ 3 2 + σ ˜ 4 ϖ β 1 L ˜ 4 2 r 1 .
Then, we conclude
A ( u , v ) Y = A 1 ( u , v ) + A 2 ( u , v ) σ ˜ 3 ( ϖ α 1 L ˜ 1 + ϖ β 1 L ˜ 3 ) 2 + σ ˜ 4 ( ϖ α 1 L ˜ 2 + ϖ β 1 L ˜ 4 ) 2 r 1 = σ ˜ 3 M ˜ 1 2 + σ ˜ 4 M ˜ 2 2 r 1 r 1 ,
and so
A ( u , v ) Y ( u , v ) Y , ( u , v ) P Ω 1 .
As we mentioned before, the operator A is completely continuous. Then, by (57), (61), and the Guo–Krasnosel’skii fixed-point theorem, we deduce that the operator A has a fixed point ( u , v ) P ( Ω ¯ 2 Ω 1 ) , which is a solution of problem (1),(2). This solution satisfies r 1 ( u , v ) Y r 2 , u ( t ) 0 , v ( t ) 0 for all t [ 0 , 1 ] , u ( t ) t α 1 u , v ( t ) t β 1 v for all t [ 0 , 1 ] ; because u + v r 1 , we obtain u   > 0 or v   > 0 , that is, u ( t ) > 0 for all t ( 0 , 1 ] or v ( t ) > 0 for all t ( 0 , 1 ] . □
Subsequently, we will establish the existence of at least three positive solutions to problem (1),(2) using the Leggett–Williams fixed-point theorem (refer to Theorem 3.3 in [29] or Theorem 2.3 in [30]).
Theorem 2.
Let  ϖ = q n  with  n N Assume that  ( H 1 )  and  ( H 2 )  are satisfied. In addition, we suppose that there exist positive constants  0 < r 1 < r 2 < r 3  such that 
  • (H5) f ( t , u , v , x , y ) < r 1 2 M 1 , t [ 0 , 1 ] , u , v 0 , u + v r 1 , x 0 , r 1 Γ q ( δ 1 + 1 ) , y 0 , r 1 Γ q ( γ 1 + 1 ) , g ( t , u , v , x , y ) < r 1 2 M 2 , t [ 0 , 1 ] , u , v 0 , u + v r 1 , x 0 , r 1 Γ q ( δ 2 + 1 ) , y 0 , r 1 Γ q ( γ 2 + 1 ) ;
  • (H6) f ( t , u , v , x , y ) > r 2 2 M ˜ 1 , t [ ϖ , 1 ] , u , v 0 , r 2 u + v r 3 , x 0 , r 3 Γ q ( δ 1 + 1 ) , y 0 , r 3 Γ q ( γ 1 + 1 ) , g ( t , u , v , x , y ) > r 2 2 M ˜ 2 , t [ ϖ , 1 ] , u , v 0 , r 2 u + v r 3 , x 0 , r 3 Γ q ( δ 2 + 1 ) , y 0 , r 3 Γ q ( γ 2 + 1 ) ;
  • (H7) f ( t , u , v , x , y ) r 3 2 M 1 , t [ 0 , 1 ] , u , v 0 , u + v r 3 , x 0 , r 3 Γ q ( δ 1 + 1 ) , y 0 , r 3 Γ q ( γ 1 + 1 ) , g ( t , u , v , x , y ) r 3 2 M 2 , t [ 0 , 1 ] , u , v 0 , u + v r 3 , x 0 , r 3 Γ q ( δ 2 + 1 ) , y 0 , r 3 Γ q ( γ 2 + 1 ) .
Then, problem (1),(2) has at least three positive solutions  ( u i ( t ) , v i ( t ) ) , t [ 0 , 1 ] , i = 1 , , 3 such that  ( u i , v i ) P i = 1 , , 3 ( u 1 , v 1 )   < r 1 ( u 3 , v 3 )   > r 1 inf t [ ϖ , 1 ] ( u 2 ( t ) + v 2 ( t ) ) > r 2 and  inf t [ ϖ , 1 ] ( u 3 ( t ) + v 3 ( t ) ) < r 2 .
Proof. 
Firstly, we prove that A : P ¯ r 3 P ¯ r 3 , where P r 3 = { ( u , v ) P , ( u , v )   < r 3 } . For any ( u , v ) P ¯ r 3 , we have ( u , v ) r 3 , and so u + v r 3 and 0 u ( t ) + v ( t ) r 3 for all t [ 0 , 1 ] . By using ( H 7 ) and Lemma 8, we find
A 1 ( u , v )   = sup t [ 0 , 1 ] | A 1 ( u , v ) ( t ) | 0 1 G 1 ( 1 , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 2 ( 1 , q s ) G u v δ 2 γ 2 ( s ) d q s r 3 2 M 1 0 1 G 1 ( 1 , q s ) d q s + r 3 2 M 2 0 1 G 2 ( 1 , q s ) d q s = r 3 2 M 1 L 1 + r 3 2 M 2 L 2 = L 1 2 M 1 + L 2 2 M 2 r 3 ,
and
A 2 ( u , v )   = sup t [ 0 , 1 ] | A 2 ( u , v ) ( t ) | 0 1 G 3 ( 1 , q s ) F u v δ 1 γ 1 ( s ) d q s + 0 1 G 4 ( 1 , q s ) G u v δ 2 γ 2 ( s ) d q s r 3 2 M 1 0 1 G 3 ( 1 , q s ) d q s + r 3 2 M 2 0 1 G 4 ( 1 , q s ) d q s = r 3 2 M 1 L 3 + r 3 2 M 2 L 4 = L 3 2 M 1 + L 4 2 M 2 r 3 .
Then, we obtain
A ( u , v ) L 1 + L 3 2 M 1 + L 2 + L 4 ) 2 M 2 r 3 = M 1 2 M 1 + M 2 2 M 2 r 3 = r 3 , ( u , v ) P ¯ r 3 .
So, A ( P ¯ r 3 ) P ¯ r 3 .
We consider r ˜ 3 ( r 2 , r 3 ) , and we define the concave nonnegative continuous functional Θ on P by Θ ( u , v ) = inf t [ ϖ , 1 ] ( u ( t ) + v ( t ) ) , ( u , v ) P . We see that Θ ( u , v )   ( u , v ) for all ( u , v ) P ¯ r 3 .
Next, we will verify conditions (i)–(iii) of Theorem 2.3 from [30], with E = Y , K = P , A = A , m = r 1 , c = r 2 , l = r 3 , and d = r ˜ 3 .
Firstly, we verify condition (ii). For ( u , v ) P ¯ r 1 , we will show that A ( u , v )   < r 1 . For this, let ( u , v ) P ¯ r 1 . In a similar manner to that in (62) and (63), by using ( H 5 ) , we obtain
A 1 ( u , v )   < L 1 2 M 1 + L 2 2 M 2 r 1 , A 2 ( u , v ) < L 3 2 M 1 + L 4 2 M 2 r 1 ,
and so A ( u , v )   < r 1 . So, we have assumption (ii) of Theorem 2.3 from [30].
We now verify condition (i). We set the element ( u 0 ( t ) , v 0 ( t ) ) = ( r 2 + r ˜ 3 4 , r 2 + r ˜ 3 4 ) , t [ 0 , 1 ] . Because u 0 ( t ) 0 , v 0 ( t ) 0 for all t [ 0 , 1 ] , ( u 0 , v 0 )   = r 2 + r ˜ 3 2 < r ˜ 3 , and Θ ( u 0 , v 0 ) = r 2 + r ˜ 3 2 > r 2 , we deduce that ( u 0 , v 0 ) { ( u , v ) , ( u , v ) P ( Θ , r 2 , r ˜ 3 ) , Θ ( u , v ) > r 2 } . Now, let ( u , v ) P ( Θ , r 2 , r ˜ 3 ) , that is, ( u , v ) P , Θ ( u , v ) r 2 and ( u , v ) r ˜ 3 . So, we have u ( t ) + v ( t ) r ˜ 3 for all t [ 0 , 1 ] and inf t [ ϖ , 1 ] ( u ( t ) + v ( t ) ) r 2 . Then, by ( H 6 ) and Lemma 8, we find
Θ ( A ( u , v ) ) = inf t [ ϖ , 1 ] ( A 1 ( u , v ) ( t ) + A 2 ( u , v ) ( t ) ) inf t [ ϖ , 1 ] A 1 ( u , v ) ( t ) + inf t [ ϖ , 1 ] A 2 ( u , v ) ( t ) inf t [ ϖ , 1 ] 0 1 G 1 ( t , q s ) F u , v δ 1 γ 1 ( s ) d q s + inf t [ ϖ , 1 ] 0 1 G 2 ( t , q s ) G u , v δ 2 γ 2 ( s ) d q s + inf t [ ϖ , 1 ] 0 1 G 3 ( t , q s ) F u , v δ 1 γ 1 ( s ) d q s + inf t [ ϖ , 1 ] 0 1 G 4 ( t , q s ) G u , v δ 1 γ 1 ( s ) d q s 0 1 inf t [ ϖ , 1 ] G 1 ( t , q s ) F u , v δ 1 γ 1 ( s ) d q s + 0 1 inf t [ ϖ , 1 ] G 2 ( t , q s ) G u , v δ 2 γ 2 ( s ) d q s + 0 1 inf t [ ϖ , 1 ] G 3 ( t , q s ) F u , v δ 1 γ 1 ( s ) d q s + 0 1 inf t [ ϖ , 1 ] G 4 ( t , q s ) G u , v δ 1 γ 1 ( s ) d q s ϖ 1 ϖ α 1 G 1 ( 1 , q s ) F u , v δ 1 γ 1 d q s + ϖ 1 ϖ α 1 G 2 ( 1 , q s ) G u , v δ 2 γ 2 d q s + ϖ 1 ϖ β 1 G 3 ( 1 , q s ) F u , v δ 1 γ 1 d q s + ϖ 1 ϖ β 1 G 4 ( 1 , q s ) G u , v δ 2 γ 2 d q s > r 2 ϖ α 1 2 M ˜ 1 ϖ 1 G 1 ( 1 , q s ) d q s + r 2 ϖ α 1 2 M ˜ 2 ϖ 1 G 2 ( 1 , q s ) d q s + r 2 ϖ β 1 2 M ˜ 1 ϖ 1 G 3 ( 1 , q s ) d q s + r 2 ϖ β 1 2 M ˜ 2 ϖ 1 G 4 ( 1 , q s ) d q s = r 2 ϖ α 1 2 M ˜ 1 L ˜ 1 + r 2 ϖ α 1 2 M ˜ 2 L ˜ 2 + r 2 ϖ β 1 2 M ˜ 1 L ˜ 3 + r 2 ϖ β 1 2 M ˜ 2 L ˜ 4 = ϖ α 1 L ˜ 1 + ϖ β 1 L ˜ 3 2 M ˜ 1 + ϖ α 1 L ˜ 2 + ϖ β 1 L ˜ 4 2 M ˜ 2 r 2 = M ˜ 1 2 M ˜ 1 + M ˜ 2 2 M ˜ 2 r 2 = r 2 .
Therefore, Θ ( A ( u , v ) ) > r 2 , and we have assumption (i) of Theorem 2.3 from [30].
We now verify condition (iii), namely, Θ ( A ( u , v ) ) > r 2 for all ( u , v ) P ( Θ , r 2 , r 3 ) and A ( u , v )   > r ˜ 3 . So, let ( u , v ) P ( Θ , r 2 , r 3 ) and A ( u , v )   > r ˜ 3 . By using similar arguments to those used before, we deduce that Θ ( A ( u , v ) ) > r 2 ; that is, assumption (iii) of Theorem 2.3 from [30] is satisfied.
We know that A is a completely continuous operator. Then, by the Leggett–Williams fixed-point theorem (see Theorem 2.3 from [30]), we conclude that problem (1),(2) has at least three positive solutions ( u i ( t ) , v i ( t ) ) t [ 0 , 1 ] , i = 1 , , 3 , with ( u i , v i ) P , i = 1 , , 3 and ( u 1 , v 1 )   < r 1 , ( u 3 , v 3 )   > r 1 , Θ ( u 2 , v 2 ) = inf t [ ϖ , 1 ] ( u 2 ( t ) + v 2 ( t ) ) > r 2 and Θ ( u 3 , v 3 ) = inf t [ ϖ , 1 ] ( u 3 ( t ) + v 3 ( t ) ) < r 2 . □
The following result is derived from the Schauder fixed-point theorem (refer to [31]).
Theorem 3.
Assume that ( H 1 ) and ( H 2 ) are satisfied. In addition, we suppose that there exist continuous functions P i , Q i : [ 0 , 1 ] R + , i = 1 , , 5 , such that
f ( t , u 1 , u 2 , u 3 , u 4 ) i = 1 4 P i ( t ) u i + P 5 ( t ) , g ( t , u 1 , u 2 , u 3 , u 4 ) i = 1 4 Q i ( t ) u i + Q 5 ( t ) ,
for all t [ 0 , 1 ] and u i R + , i = 1 , , 4 . If
Ψ 0 = max { Ψ 1 , Ψ 2 } < 1 ,
where
Ψ 1 = ( L 1 + L 3 ) p 1 * + p 3 * Γ q ( δ 1 + 1 ) + ( L 2 + L 4 ) q 1 * + q 3 * Γ q ( δ 2 + 1 ) , Ψ 2 = ( L 1 + L 3 ) p 2 * + p 4 * Γ q ( γ 1 + 1 ) + ( L 2 + L 4 ) q 2 * + q 4 * Γ q ( γ 2 + 1 ) , p i * = sup t [ 0 , 1 ] P i ( t ) , q i * = sup t [ 0 , 1 ] Q i ( t ) , i = 1 , , 4 ,
then the boundary value problem (1),(2) has at least one positive solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] .
Proof. 
We consider a positive number R 0 satisfying the condition
R 0 ( L 1 + L 3 ) p 5 * + ( L 2 + L 4 ) q 5 * 1 Ψ 0 ,
where p 5 * = sup t [ 0 , 1 ] P 5 ( t ) , q 5 * = sup t [ 0 , 1 ] Q 5 ( t ) . We define the set Ω 1 = { ( u , v ) P , ( u , v ) R 0 } .
Firstly, we show that A ( Ω 1 ) Ω 1 . For this, let ( u , v ) Ω 1 , that is, ( u , v ) Y R 0 , so u + v R 0 , which implies u R 0 and v R 0 . Then, by using (67), Lemma 4 and Lemma 8, we obtain
A 1 ( u , v ) ( t ) 0 1 G 1 ( 1 , q s ) ( P 1 ( s ) u ( s ) + P 2 ( s ) v ( s ) + P 3 ( s ) I q δ 1 u ( s ) + P 4 ( s ) I q γ 1 v ( s ) + P 5 ( s ) ) d q s + 0 1 G 2 ( 1 , q s ) ( Q 1 ( s ) u ( s ) + Q 2 ( s ) v ( s ) + Q 3 ( s ) I q δ 2 u ( s ) + Q 4 ( s ) I q γ 2 v ( s ) + Q 5 ( s ) ) d q s p 1 * u + p 2 * v + p 3 * u Γ q ( δ 1 + 1 ) + p 4 * v Γ q ( γ 1 + 1 ) + p 5 * 0 1 G 1 ( 1 , q s ) d q s + q 1 * u + q 2 * v + q 3 * u Γ q ( δ 2 + 1 ) + q 4 * v Γ q ( γ 2 + 1 ) + q 5 * 0 1 G 2 ( 1 , q s ) d q s = L 1 p 1 * + p 3 * Γ q ( δ 1 + 1 ) u + p 2 * + p 4 * Γ q ( γ 1 + 1 ) v + p 5 * + L 2 q 1 * + q 3 * Γ q ( δ 2 + 1 ) u + q 2 * + q 4 * Γ q ( γ 2 + 1 ) v + q 5 * , t [ 0 , 1 ] ,
and
A 2 ( u , v ) ( t ) 0 1 G 3 ( 1 , q s ) ( P 1 ( s ) u ( s ) + P 2 ( s ) v ( s ) + P 3 ( s ) I q δ 1 u ( s ) + P 4 ( s ) I q γ 1 v ( s ) + P 5 ( s ) ) d q s + 0 1 G 4 ( 1 , q s ) ( Q 1 ( s ) u ( s ) + Q 2 ( s ) v ( s ) + Q 3 ( s ) I q δ 2 u ( s ) + Q 4 ( s ) I q γ 2 v ( s ) + Q 5 ( s ) ) d q s p 1 * u + p 2 * v + p 3 * u Γ q ( δ 1 + 1 ) + p 4 * v Γ q ( γ 1 + 1 ) + p 5 * 0 1 G 3 ( 1 , q s ) d q s + q 1 * u + q 2 * v + q 3 * u Γ q ( δ 2 + 1 ) + q 4 * v Γ q ( γ 2 + 1 ) + q 5 * 0 1 G 4 ( 1 , q s ) d q s = L 3 p 1 * + p 3 * Γ q ( δ 1 + 1 ) u + p 2 * + p 4 * Γ q ( γ 1 + 1 ) v + p 5 * + L 4 q 1 * + q 3 * Γ q ( δ 2 + 1 ) u + q 2 * + q 4 * Γ q ( γ 2 + 1 ) v + q 5 * , t [ 0 , 1 ] .
Then, by (70)–(72), we deduce
A ( u , v ) Y ( L 1 + L 3 ) p 1 * + p 3 * Γ q ( δ 1 + 1 ) u + p 2 * + p 4 * Γ q ( γ 1 + 1 ) v + p 5 * + ( L 2 + L 4 ) q 1 * + q 3 * Γ q ( δ 2 + 1 ) u + q 2 * + q 4 * Γ q ( γ 2 + 1 ) v + q 5 * = ( L 1 + L 3 ) p 1 * + p 3 * Γ q ( δ 1 + 1 ) + ( L 2 + L 4 ) q 1 * + q 3 * Γ q ( δ 2 + 1 ) u + ( L 1 + L 3 ) p 2 * + p 4 * Γ q ( γ 1 + 1 ) + ( L 2 + L 4 ) q 2 * + q 4 * Γ q ( γ 2 + 1 ) v + ( L 1 + L 3 ) p 5 * + ( L 2 + L 4 ) q 5 * = Ψ 1 u + Ψ 2 v + ( L 1 + L 3 ) p 5 * + ( L 2 + L 4 ) q 5 * Ψ 0 ( u , v ) Y + ( L 1 + L 3 ) p 5 * + ( L 2 + L 4 ) q 5 * Ψ 0 R 0 + ( L 1 + L 3 ) p 5 * + ( L 2 + L 4 ) q 5 * R 0 .
Therefore, A ( Ω 1 ) Ω 1 . Because the operator A is completely continuous, then by the Schauder fixed-point theorem, we conclude that A has a fixed point ( u , v ) P with ( u , v ) Y R 0 , which is a positive solution of problem (1),(2). □
In the final theorem, we will employ the Banach contraction mapping principle.
Theorem 4.
Assume that ( H 1 ) and ( H 2 ) are satisfied. In addition, we suppose that there exist continuous functions H i , K i : [ 0 , 1 ] R + , i = 1 , , 4 , such that
| f ( t , u 1 , u 2 , u 3 , u 4 ) f ( t , v 1 , v 2 , v 3 , v 4 ) |   i = 1 4 H i ( t ) | u i v i | , | g ( t , u 1 , u 2 , u 3 , u 4 ) g ( t , v 1 , v 2 , v 3 , v 4 ) |   i = 1 4 K i ( t ) | u i v i | ,
for all t [ 0 , 1 ] , u i , v i R + , i = 1 , , 4 . If
Φ 0 = max { Φ 1 , Φ 2 } < 1 ,
where
Φ 1 = ( L 1 + L 3 ) h 1 * + h 3 * Γ q ( δ 1 + 1 ) + ( L 2 + L 4 ) k 1 * + k 3 * Γ q ( δ 2 + 1 ) , Φ 2 = ( L 1 + L 3 ) h 2 * + h 4 * Γ q ( γ 1 + 1 ) + ( L 2 + L 4 ) k 2 * + k 4 * Γ q ( γ 2 + 1 ) , h i * = sup t [ 0 , 1 ] H i ( t ) , k i * = sup t [ 0 , 1 ] K i ( t ) , i = 1 , , 4 ,
then the boundary value problem given by (1),(2) possesses a unique positive solution ( u * ( t ) , v * ( t ) ) , t [ 0 , 1 ] . Moreover, for any initial point ( u 0 , v 0 ) P , the sequence ( ( u n , v n ) ) n 0 defined as ( u n , v n ) = A ( u n 1 , v n 1 ) , n 1 , converges to ( u * , v * ) as n . Additionally, an error estimate is provided by the following inequality:
( u n , v n ) ( u * , v * ) Y Φ 0 n 1 Φ 0 ( u 1 , v 1 ) ( u 0 , v 0 ) Y .
Proof. 
By using (74), Lemma 4, and Lemma 8, for any ( u 1 , v 1 ) , ( u 2 , v 2 ) P , we obtain
| A 1 ( u 1 , v 1 ) ( t ) A 1 ( u 2 , v 2 ) ( t ) | = 0 1 G 1 ( t , q s ) F u 1 v 1 δ 1 γ 1 ( s ) d q s + 0 1 G 2 ( t , q s ) G u 1 v 1 δ 2 γ 2 ( s ) d q s 0 1 G 1 ( t , q s ) F u 2 v 2 δ 1 γ 1 ( s ) d q s 0 1 G 2 ( t , q s ) G u 2 v 2 δ 2 γ 2 ( s ) d q s 0 1 G 1 ( t , q s ) F u 1 v 1 δ 1 γ 1 ( s ) F u 2 v 2 δ 1 γ 1 ( s ) d q s + 0 1 G 2 ( t , q s ) G u 1 v 1 δ 2 γ 2 ( s ) G u 2 v 2 δ 2 γ 2 ( s ) d q s 0 1 G 1 ( 1 , q s ) H 1 ( s ) | u 1 ( s ) u 2 ( s ) | + H 2 ( s ) | v 1 ( s ) v 2 ( s ) | + H 3 ( s ) | I q δ 1 u 1 ( s ) I q δ 1 u 2 ( s ) | + H 4 ( s ) | I q γ 1 v 1 ( s ) I q γ 1 v 2 ( s ) | d q s + 0 1 G 2 ( 1 , q s ) K 1 ( s ) | u 1 ( s ) u 2 ( s ) | + K 2 ( s ) | v 1 ( s ) v 2 ( s ) | + K 3 ( s ) | I q δ 2 u 1 ( s ) I q δ 2 u 2 ( s ) | + K 4 ( s ) | I q γ 2 v 1 ( s ) I q γ 2 v 2 ( s ) | d q s 0 1 G 1 ( 1 , q s ) H 1 ( s ) u 1 u 2 + H 2 ( s ) v 1 v 2 + H 3 ( s ) 1 Γ q ( δ 1 + 1 ) u 1 u 2 + H 4 ( s ) 1 Γ q ( γ 1 + 1 ) v 1 v 2 d q s + 0 1 G 2 ( 1 , q s ) K 1 ( s ) u 1 u 2 + K 2 ( s ) v 1 v 2 + K 3 ( s ) 1 Γ q ( δ 2 + 1 ) u 1 u 2 + K 4 ( s ) 1 Γ q ( γ 2 + 1 ) v 1 v 2 d q s h 1 * + h 3 * Γ q ( δ 1 + 1 ) u 1 u 2 0 1 G 1 ( 1 , q s ) d q s + h 2 * + h 4 * Γ q ( γ 1 + 1 ) v 1 v 2 0 1 G 1 ( 1 , q s ) d q s + k 1 * + k 3 * Γ q ( δ 2 + 1 ) u 1 u 2 0 1 G 2 ( 1 , q s ) d q s + k 2 * + k 4 * Γ q ( γ 2 + 1 ) v 1 v 2 0 1 G 2 ( 1 , q s ) d q s = u 1 u 2 h 1 * + h 3 * Γ q ( δ 1 + 1 ) L 1 + k 1 * + k 3 * Γ q ( δ 2 + 1 ) L 2 + v 1 v 2 h 2 * + h 4 * Γ q ( γ 1 + 1 ) L 1 + k 2 * + k 4 * Γ q ( γ 2 + 1 ) L 2 , t [ 0 , 1 ] .
In a similar manner, we deduce
| A 2 ( u 1 , v 1 ) ( t ) A 2 ( u 2 , v 2 ) ( t ) | u 1 u 2 h 1 * + h 3 * Γ q ( δ 1 + 1 ) L 3 + k 1 * + k 3 * Γ q ( δ 2 + 1 ) L 4 + v 1 v 2 h 2 * + h 4 * Γ q ( γ 1 + 1 ) L 3 + k 2 * + k 4 * Γ q ( γ 2 + 1 ) L 4 , t [ 0 , 1 ] .
Therefore, by (78) and (79), we conclude
A ( u 1 , v 1 ) A ( u 2 , v 2 ) Y u 1 u 2 h 1 * + h 3 * Γ q ( δ 1 + 1 ) ( L 1 + L 3 ) + k 1 * + k 3 * Γ q ( δ 2 + 1 ) ( L 2 + L 4 ) + v 1 v 2 h 2 * + h 4 * Γ q ( γ 1 + 1 ) ( L 1 + L 3 ) + k 2 * + k 4 * Γ q ( γ 2 + 1 ) ( L 2 + L 4 ) max { Φ 1 , Φ 2 } ( u 1 , v 1 ) ( u 2 , v 2 ) Y = Φ 0 ( u 1 , v 1 ) ( u 2 , v 2 ) Y .
By satisfying condition (75), we establish that the operator A is a contraction mapping. Consequently, according to the Banach fixed-point theorem, it follows that A possesses a unique fixed point ( u * , v * ) P . This fixed point corresponds to the unique positive solution of problem (1),(2). Furthermore, for any ( u 0 , v 0 ) P , the sequence ( ( u n , v n ) ) n 0 defined by ( u n , v n ) = A ( u n 1 , v n 1 ) for n 1 converges to ( u * , v * ) as n . The proof of the Banach theorem yields the error estimate (77). □

4. Examples

In this section, we will provide various examples to demonstrate and illustrate our key findings.
Let q = 1 2 , α = 7 2 , n = 4 , β = 19 4 , m = 5 , ς = 5 3 , ϑ = 12 5 , δ 1 = 46 5 , γ 1 = 31 6 , δ 2 = 59 8 , γ 2 = 21 13 , a = 1 , b = 1 , c = 1 , d = 1 , ϱ 1 = 14 9 , σ 1 = 2 11 , η 1 = 1 , ρ 1 = 13 7 , ξ 1 = 1 2 , ω 1 = 1 16 , ζ 1 = 1 8 , θ 1 = 1 4 , a 1 = 1 6 , b 1 = 31 , c 1 = 25 , d 1 = 1 2 , and ϖ = 1 4 .
We consider the system of fractional q-difference equations
D 1 / 2 7 / 2 u ( t ) + f t , u ( t ) , v ( t ) , I 1 / 2 46 / 5 u ( t ) , I 1 / 2 31 / 6 v ( t ) = 0 , t [ 0 , 1 ] , D 1 / 2 19 / 4 v ( t ) + g t , u ( t ) , v ( t ) , I 1 / 2 59 / 8 u ( t ) , I 1 / 2 21 / 13 v ( t ) = 0 , t [ 0 , 1 ] ,
with the boundary conditions
u ( 0 ) = D 1 / 2 u ( 0 ) = D 1 / 2 2 u ( 0 ) = 0 , D 1 / 2 5 / 3 u ( 1 ) = 1 6 D 1 / 2 14 / 9 u 1 2 + 31 D 1 / 2 2 / 11 v 1 16 , v ( 0 ) = D 1 / 2 v ( 0 ) = D 1 / 2 2 v ( 0 ) = D 1 / 2 3 v ( 0 ) = 0 , D 1 / 2 12 / 5 v ( 1 ) = 25 D 1 / 2 u 1 8 + 1 2 D 1 / 2 13 / 7 v 1 4 .
We obtain Λ 1 1.86833829 , Λ 2 0.00175841 , Λ 3 1.8190837 , Λ 4 3.62744165 , and Δ = Λ 1 Λ 4 Λ 2 Λ 3 6.77408943 > 0 . So, assumption ( H 1 ) is satisfied. We also have
g 1 ( t , s ) = 1 Γ 1 / 2 ( 7 / 2 ) t 5 / 2 ( 1 s ) ( 5 / 6 ) ( t s ) ( 5 / 2 ) , 0 s t 1 , t 5 / 2 ( 1 s ) ( 5 / 6 ) , 0 t s 1 , g 2 ( t , s ) = 1 Γ 1 / 2 ( 19 / 4 ) t 15 / 4 ( 1 s ) ( 27 / 20 ) ( t s ) ( 15 / 4 ) , 0 s t 1 , t 15 / 4 ( 1 s ) ( 27 / 20 ) , 0 t s 1 , g 11 ( t , s ) = 1 Γ 1 / 2 ( 35 / 18 ) t 17 / 18 ( 1 s ) ( 5 / 6 ) ( t s ) ( 17 / 18 ) , 0 s t 1 , t 17 / 18 ( 1 s ) ( 5 / 6 ) , 0 t s 1 , g 21 ( t , s ) = 1 Γ 1 / 2 ( 5 / 2 ) t 3 / 2 ( 1 s ) ( 5 / 6 ) ( t s ) ( 3 / 2 ) , 0 s t 1 , t 3 / 2 ( 1 s ) ( 5 / 6 ) , 0 t s 1 , g 31 ( t , s ) = 1 Γ 1 / 2 ( 201 / 44 ) t 157 / 44 ( 1 s ) ( 27 / 20 ) ( t s ) ( 157 / 44 ) , 0 s t 1 , t 157 / 44 ( 1 s ) ( 27 / 20 ) , 0 t s 1 , g 41 ( t , s ) = 1 Γ 1 / 2 ( 81 / 28 ) t 53 / 28 ( 1 s ) ( 27 / 20 ) ( t s ) ( 53 / 28 ) , 0 s t 1 , t 53 / 28 ( 1 s ) ( 27 / 20 ) , 0 t s 1 .
In addition, we find
G 1 ( t , s ) = g 1 ( t , s ) + t 5 / 2 Δ 1 6 Λ 4 g 11 1 2 , s + 25 Λ 2 g 21 1 8 , s , G 2 ( t , s ) = t 5 / 2 Δ 31 Λ 4 g 31 1 16 , s + 1 2 Λ 2 g 41 1 4 , s , G 3 ( t , s ) = t 15 / 4 Δ 1 6 Λ 3 g 11 1 2 , s + 25 Λ 1 g 21 1 8 , s , G 4 ( t , s ) = g 2 ( t , s ) + t 15 / 4 Δ 31 Λ 3 g 31 1 16 , s + 1 2 Λ 1 g 41 1 4 , s ,
for all t , s [ 0 , 1 ] .
After complex computations using the Mathematica program, we obtain
L 1 = 0 1 G 1 ( 1 , q s ) d q s 0.09173103 , L 2 = 0 1 G 2 ( 1 , q s ) d q s 0.00012801 , L 3 = 0 1 G 3 ( 1 , q s ) d q s 0.17043259 , L 4 = 0 1 G 4 ( 1 , q s ) d q s 0.02776846 , L ˜ 1 = 1 / 4 1 G 1 ( 1 , q s ) d q s 0.08337987 , L ˜ 2 = 1 / 4 1 G 2 ( 1 , q s ) d q s 0.00008466 , L ˜ 3 = 1 / 4 1 G 3 ( 1 , q s ) d q s 0.13008493 , L ˜ 4 = 1 / 4 1 G 4 ( 1 , q s ) d q s 0.02446965 , M 1 0.26216363 , M 2 0.02789647 , M ˜ 1 0.00332425 , M ˜ 2 0.00013782 .
Example 1.
We consider the functions
f ( t , u , v , x , y ) = ( u + v ) 2 25 + 1 8 arctan x + 1 7 cos 2 y + 3 ( t 2 + 1 ) t + 4 , g ( t , u , v , x , y ) = e ( u + v ) + x 2 3 + y + 9 ( t + 1 ) t 3 + 2 ,
for all t [ 0 , 1 ] , u , v , x , y R + . Assumption ( H 2 ) is satisfied.
We choose r 1 = 1 1000 , r 2 = 10 , σ ˜ 1 = 3 < 1 M 1 3.8144 , σ ˜ 2 = 35 < 1 M 2 35.8468 , σ ˜ 3 = 301 > 1 M ˜ 1 300.8201 , and σ ˜ 4 = 7256 > 1 M ˜ 2 7255.6974 .
Then, we obtain
f ( t , u , v , x , y ) min t [ 1 / 4 , 1 ] 3 ( t 2 + 1 ) t + 4 = 0.75 σ ˜ 3 r 1 2 = 0.1505 , t 1 4 , 1 , u , v 0 , u + v 1 1000 , x 0 , 1 1000 Γ 1 / 2 ( 51 / 5 ) , y 0 , 1 1000 Γ 1 / 2 ( 37 / 6 ) , g ( t , u , v , x , y ) e 1 / 1000 + min t [ 1 / 4 , 1 ] 9 ( t + 1 ) t 3 + 2 6.5804 σ ˜ 4 r 1 2 3.628 , t 1 4 , 1 , u , v 0 , u + v 1 1000 , x 0 , 1 1000 Γ 1 / 2 ( 67 / 8 ) , y 0 , 1 1000 Γ 1 / 2 ( 34 / 13 ) ,
that is, assumption ( H 3 ) is satisfied. In addition, we have
f ( t , u , v , x , y ) 4 + 1 8 arctan 10 Γ 1 / 2 ( 51 / 5 ) + 1 7 + max t [ 0 , 1 ] 3 ( t 2 + 1 ) t + 4 5.3502 σ ˜ 1 r 2 2 = 15 , t [ 0 , 1 ] , u , v 0 , u + v 10 , x 0 , 10 Γ 1 / 2 ( 51 / 5 ) , y 0 , 10 Γ 1 / 2 ( 37 / 6 ) , g ( t , u , v , x , y ) 1 + 10 Γ 1 / 2 ( 67 / 8 ) 2 + 10 Γ 1 / 2 ( 34 / 13 ) + max t [ 0 , 1 ] 9 ( t + 1 ) t 3 + 2 15.5719 σ ˜ 2 r 2 2 = 175 , t [ 0 , 1 ] , u , v 0 , u + v 10 , x 0 , 10 Γ 1 / 2 ( 67 / 8 ) , y 0 , 10 Γ 1 / 2 ( 34 / 13 ) ,
so assumption ( H 4 ) is verified.
By Theorem 1, we deduce that problem (81),(82) with the functions in (86) has at least one positive solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] , such that 1 1000 u + v 10 , and min t [ 1 / 4 , 1 ] u ( t ) 1 4 5 / 2 u , min t [ 1 / 4 , 1 ] v ( t ) 1 4 15 / 4 v .
Example 2.
Let the functions
f ( t , u , v , x , y ) = t 2 + 2 4 + u 3 ( 1 + u ) + v 5 ( 1 + v ) + x 1 / 3 + 1 6 e y , t [ 0 , 1 ] , u , v 0 , u + v 1 , t 2 + 2 4 + 1 3 1 + 4175 arctan 3 ( u + v ) 3 π 6 u 1 + u + 1 5 1 + 3985 1 sin π 2 ( u + v ) v 1 + v + x 1 / 3 + 1 6 e y , t [ 0 , 1 ] , u , v 0 , 1 < u + v 4 , t 2 + 2 4 + 1 3 1 + 4175 arctan 4 3 3 π 6 u 1 + u + 3986 5 v 1 + v + x 1 / 3 + 1 6 e y , t [ 0 , 1 ] , u , v 0 , u + v > 4 , g ( t , u , v , x , y ) = 14 t 5 + 3 7 + 4 u 1 + u + v 1 + v + x x 2 + 1 + y 1 / 4 , t [ 0 , 1 ] , u , v 0 , u + v 1 , 14 t 5 + 3 7 + 4 1 + 38547 1 1 u + v u 1 + u + 1 + 18452 cos 2 3 π 2 ( u + v ) v 1 + v + x x 2 + 1 + y 1 / 4 , t [ 0 , 1 ] , u , v 0 , 1 < u + v 4 , 14 t 5 + 3 7 + 77098 u 1 + u + 18453 v 1 + v + x x 2 + 1 + y 1 / 4 , t [ 0 , 1 ] , u , v 0 , u + v > 4 .
Assumption ( H 2 ) is satisfied.
We choose r 1 = 1 , r 2 = 4 , and r 3 = 6000 . Then, we obtain
f ( t , u , v , x , y ) 3 4 + 1 3 + 1 5 + 1 Γ 1 / 2 ( 51 / 5 ) 1 / 3 + 1 6 1.63046876 < r 1 2 M 1 1.90720585 , t [ 0 , 1 ] , u , v 0 , u + v 1 , x 0 , 1 Γ 1 / 2 ( 51 / 5 ) , y 0 , 1 Γ 1 / 2 ( 37 / 6 ) , g ( t , u , v , x , y ) 17 7 + 5 + 1 / Γ 1 / 2 ( 67 / 8 ) ( 1 / Γ 1 / 2 ( 67 / 8 ) ) 2 + 1 + 1 Γ 1 / 2 ( 34 / 13 ) 1 / 4 8.39492155 < r 1 2 M 2 17.92341375 , t [ 0 , 1 ] , u , v 0 , u + v 1 , x 0 , 1 Γ 1 / 2 ( 67 / 8 ) , y 0 , 1 Γ 1 / 2 ( 34 / 13 ) ,
that is, assumption ( H 5 ) is satisfied.
Next, we find
f ( t , u , v , x , y ) 1 64 + 1 2 + 1 3 1 + 4175 arctan 4 3 3 π 6 u 1 + u + 3986 5 v 1 + v + 1 6 e 6000 / Γ 1 / 2 ( 37 / 6 ) 33 64 + min 1 3 1 + 4175 arctan 4 3 3 π 6 , 3986 5 u 1 + u + v 1 + v + 1 6 e 6000 / Γ 1 / 2 ( 37 / 6 ) 33 64 + min 1 3 1 + 4175 arctan 4 3 3 π 6 , 3986 5 u + v 1 + u + v + 1 6 e 6000 / Γ 1 / 2 ( 37 / 6 ) 33 64 + min 1 3 1 + 4175 arctan 4 3 3 π 6 , 3986 5 4 5 + 1 6 e 6000 / Γ 1 / 2 ( 37 / 6 ) 638.275625 > r 2 2 M ˜ 1 601.64029336 , t 1 4 , 1 , u , v 0 , 4 u + v 6000 , x 0 , 6000 Γ 1 / 2 ( 51 / 5 ) , y 0 , 6000 Γ 1 / 2 ( 37 / 6 ) , g ( t , u , v , x , y ) 14 ( 1 / 4 ) 5 + 3 7 + min { 77098 , 18453 } u 1 + u + v 1 + v 14 ( 1 / 4 ) 5 + 3 7 + 18453 u + v 1 + u + v 14 ( 1 / 4 ) 5 + 3 7 + 18453 · 4 5 14762.83052455 > r 2 2 M ˜ 2 14511.39486712 , t 1 4 , 1 , u , v 0 , 4 u + v 6000 , x 0 , 6000 Γ 1 / 2 ( 67 / 8 ) , y 0 , 6000 Γ 1 / 2 ( 34 / 13 ) ,
and so assumption ( H 6 ) is verified.
Lastly, we deduce
f ( t , u , v , x , y ) 3 4 + 1 3 1 + 4175 arctan 4 3 3 π 6 6000 6001 + 3986 5 · 6000 6001 + 6000 Γ 1 / 2 ( 51 / 5 ) 1 / 3 + 1 6 1690.110593 r 3 2 M 1 11443.23507 , t [ 0 , 1 ] , u , v 0 , u + v 6000 , x 0 , 6000 Γ 1 / 2 ( 51 / 5 ) , y 0 , 6000 Γ 1 / 2 ( 37 / 6 ) , g ( t , u , v , x , y ) 17 7 + 77098 · 6000 6001 + 18453 · 6000 6001 + 1 2 + 6000 Γ 1 / 2 ( 34 / 13 ) 1 / 4 95546.32860601 r 3 2 M 2 107540.48247 , t [ 0 , 1 ] , u , v 0 , u + v 6000 , x 0 , 6000 Γ 1 / 2 ( 67 / 8 ) , y 0 , 6000 Γ 1 / 2 ( 34 / 13 ) ,
that is, assumption ( H 7 ) is also satisfied.
Therefore, by Theorem 2, we conclude that problem (81),(82) with the nonlinearities in (89) has at least three positive solutions ( u i , v i ) P , i = 1 , , 3 , such that ( u 1 , v 1 ) Y   < 1 , ( u 3 , v 3 ) Y   > 1 , inf t [ 1 / 4 , 1 ] ( u 2 ( t ) + v 2 ( t ) ) > 4 , and inf t [ 1 / 4 , 1 ] ( u 3 ( t ) + v 3 ( t ) ) < 4 .
Example 3.
We consider the functions
f ( t , u , v , x , y ) = ( t + 1 ) 1 / 3 e t + 2 u 4 ( 1 + u 2 ) + ( t 1 ) 2 v 2 ( t + 5 ) + e t x 3 + t y 1 + 3 y + t 11 / 3 t 2 + 6 , g ( t , u , v , x , y ) = t 2 / 7 u 3 ( t + 4 ) + ( t + 3 ) e t + 1 v 2 ( t 2 + 3 ) ( 1 + 2 v 3 ) + x ( t + 1 ) 2 ( 1 + 2 x ) + t y t 3 + 1 + t 6 / 5 t + 2 ,
for all t [ 0 , 1 ] , u , v , x , y 0 . We obtain the following inequalities:
f ( t , u , v , x , y ) P 1 ( t ) u + P 2 ( t ) v + P 3 ( t ) x + P 4 ( t ) y + P 5 ( t ) , g ( t , u , v , x , y ) Q 1 ( t ) u + Q 2 ( t ) v + Q 3 ( t ) x + Q 4 ( t ) y + Q 5 ( t ) ,
for all t [ 0 , 1 ] , u , v , x , y 0 , where
P 1 ( t ) = ( t + 1 ) 1 / 3 e t + 2 4 , P 2 ( t ) = ( t 1 ) 2 2 ( t + 5 ) , P 3 ( t ) = e t 3 , P 4 ( t ) = t , P 5 ( t ) = t 11 / 3 t 2 + 6 , Q 1 ( t ) = t 2 / 7 3 ( t + 4 ) , Q 2 ( t ) = ( t + 3 ) e t + 1 2 ( t 2 + 3 ) , Q 3 ( t ) = 1 ( t + 1 ) 2 , Q 4 ( t ) = t t 3 + 1 , Q 5 ( t ) = t 6 / 5 t + 2 ,
for all t [ 0 , 1 ] .
The functions P i and Q i , i = 1 , , 5 , are continuous and satisfy condition (67). In addition, we find p 1 * 1.84726402 , p 2 * = 0.1 , p 3 * 0.90609394 , p 4 * = 1 , q 1 * 0.06666667 , q 2 * 3.69452805 , q 3 * = 1 , q 4 * 0.52913368 , Ψ 1 0.48811984 , Ψ 2 0.16566027 , and Ψ 0 0.4881 < 1 ; that is, assumption (68) is satisfied. Therefore, by Theorem 3, we conclude that problem (81),(82) with the nonlinearities in (93) has at least one positive solution ( u ( t ) , v ( t ) ) , t [ 0 , 1 ] .
Example 4.
Let the functions
f ( t , u , v , x , y ) = 2 ( t + 1 ) 3 e 5 t + 1 3 u 2 + 4 + ( t 2 ) 2 2 e 3 t 2 cos 2 ( v + 1 ) + t 15 / 4 t 2 + 2 + t x 4 ( t + 1 ) + t + 1 t 2 + 3 arctan y , g ( t , u , v , x , y ) = t 3 e 4 t + 1 2 arctan u + e 2 t 3 ( t + 2 ) 4 v 2 + 1 + t 9 / 8 t + 3 + t x 10 ( x 2 + 1 ) + e t 9 sin 2 y ,
for all t [ 0 , 1 ] , u , v , x , y 0 . We obtain the following inequalities:
| f ( t , u 1 , v 1 , x 1 , y 1 ) f ( t , u 2 , v 2 , x 2 , y 2 ) | H 1 ( t ) | u 1 u 2 | + H 2 ( t ) | v 1 v 2 | + H 3 ( t ) | x 1 x 2 | + H 4 ( t ) | y 1 y 2 | , | g ( t , u 1 , v 1 , x 1 , y 1 ) g ( t , u 2 , v 2 , x 2 , y 2 ) | K 1 ( t ) | u 1 u 2 | + K 2 ( t ) | v 1 v 2 | + K 3 ( t ) | x 1 x 2 | + K 4 ( t ) | y 1 y 2 | ,
for all t [ 0 , 1 ] , u i , v i , x i , y i 0 , i = 1 , 2 , where
H 1 ( t ) = 2 ( t + 1 ) 3 e 5 t + 1 3 , H 2 ( t ) = ( t 2 ) 2 e 3 t 2 , H 3 ( t ) = t 4 ( t + 1 ) , H 4 ( t ) = t + 1 t 2 + 3 , K 1 ( t ) = t 3 e 4 t + 1 2 , K 2 ( t ) = e 2 t 3 ( t + 2 ) 4 , K 3 ( t ) = t 10 , K 4 ( t ) = 2 e t 9 ,
for all t [ 0 , 1 ] .
The functions H i and K i , i = 1 , , 4 are continuous and satisfy condition (74). In addition, we find h 1 * 1.81218788 , h 2 * 2.71828183 , h 3 * = 0.125 , h 4 * = 0.5 , k 1 * 0.02854728 , k 2 * 0.03040764 , k 3 * = 0.1 , k 4 * 0.60406263 , Φ 1 0.47613656 , Φ 2 0.73924549 , and Φ 0 0.7392 < 1 ; that is, assumption (75) is verified. Then, by Theorem 4, we deduce that problem (81),(82) with the functions in (96) has a unique positive solution ( u * ( t ) , v * ( t ) ) , t [ 0 , 1 ] .

5. Conclusions

In this paper, we explore the existence, uniqueness, and multiplicity of positive solutions for a system of fractional q-difference equations (Equation (1)). These equations involve fractional q-integrals and are subject to coupled multi-point boundary conditions (2). These boundary conditions encompass q-derivatives and fractional q-derivatives of unknown functions with varying orders. Initially, our focus was on investigating the linear boundary value problem related to (1),(2), along with studying the associated Green functions and their properties. Subsequently, we reformulated our problem equivalently to a system of fractional q-integral equations (Equation (49)). We associated these equations with an operator, and the fixed points of this operator correspond to the positive solutions of (49). Our primary results hinge on the application of the Guo–Krasnosel’skii fixed-point theorem (in Theorem 1), the Leggett–Williams fixed-point theorem (for Theorem 2), the Schauder fixed-point theorem (in the case of Theorem 3), and the Banach contraction mapping principle (in the context of Theorem 4). In the second-to-last section of the paper, we provide several examples to elucidate and illustrate the implications of our results.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Moshinsky, M. Sobre los problemas de condiciones a la frontiera en una dimension de caracteristicas discontinuas. Bol. Soc. Mat. Mex. 1950, 7, 1–25. [Google Scholar]
  2. Yu, C.; Wang, S.; Wang, J.; Li, J. Solvability criterion for fractional q-integro-difference system with Riemann-Stieltjes integrals conditions. Fractal Fract. 2022, 6, 554. [Google Scholar] [CrossRef]
  3. Allouch, N.; Graef, J.R.; Hamani, S. Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces. Fractal Fract. 2022, 6, 237. [Google Scholar] [CrossRef]
  4. Yu, C.; Wang, J. Positive solutions of nonlocal boundary value problem for high-order nonlinear fractional q-difference equations. Abstr. Appl. Anal. 2013, 2013, 928147. [Google Scholar] [CrossRef]
  5. Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
  6. Ferreira, R.A.C. Nontrivial solutions for fractional q-difference boundary value problems. Electr. J. Qual. Theory Differ. Equ. 2010, 2010, 1–10. [Google Scholar]
  7. Yu, C.; Wang, J. Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives. Adv. Differ. Equ. 2013, 2013, 124. [Google Scholar] [CrossRef]
  8. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef]
  9. Alsaedi, A.; Al-Hutami, H.; Ahmad, B.; Agarwal, R.P. Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral-coupled boundary conditions. Fractals 2022, 30, 1–19. [Google Scholar] [CrossRef]
  10. Bai, C.; Yang, D. The iterative positive solution for a system of fractional q-difference equations with four-point boundary conditions. Discret. Dyn. Nat. Soc. 2020, 2020, 3970903. [Google Scholar] [CrossRef]
  11. Boutiara, A.; Benbachir, M.; Kaabar, M.K.A.; Martinez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval. J. Ineq. Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
  12. Jiang, M.; Huang, R. Existence and stability results for impulsive fractional q-difference equation. J. Appl. Math. Phys. 2020, 8, 1413–1423. [Google Scholar] [CrossRef]
  13. Li, X.; Han, Z.; Sun, S.; Sun, L. Eigenvalue problems of fractional q-difference equations with generalized p-Laplacian. Appl. Math. Lett. 2016, 57, 46–53. [Google Scholar] [CrossRef]
  14. Li, Y.; Liu, J.; O’Regan, D.; Xu, J. Nontrivial solutions for a system of fractional q-difference equations involving q-integral boundary conditions. Mathematics 2020, 8, 828. [Google Scholar] [CrossRef]
  15. Suantai, S.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. A coupled system of fractional q-integro-difference equations with nonlocal fractional q-integral boundary conditions. Adv. Differ. Equ. 2015, 2015, 1–21. [Google Scholar] [CrossRef]
  16. Zhai, C.; Ren, J. The unique solution for a fractional q-difference equation with three-point boundary conditions. Indag. Math. 2018, 29, 948–961. [Google Scholar] [CrossRef]
  17. Jackson, F.H. On q-functions and a certain difference operator. Trans. Roy. Soc. Edinburg 1908, 46, 253–281. [Google Scholar] [CrossRef]
  18. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  19. Ernst, T. The History of q-Calculus and a New Method; UUDM Report 2000:16; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000; ISSN 1101-3591. [Google Scholar]
  20. Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
  21. Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
  22. Al-Salam, W.A. q-Analogues of Cauchy’s formulas. Proc. Am. Math. Soc. 1966, 17, 616–621. [Google Scholar]
  23. Al-Salam, W.A.; Verma, A. A fractional Leibniz q-formula. Pacific J. Math. 1975, 60, 1–9. [Google Scholar] [CrossRef]
  24. Atici, F.M.; Eloe, P.W. Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 2007, 14, 341–352. [Google Scholar] [CrossRef]
  25. Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
  26. Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
  27. Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  28. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
  29. Leggett, R.; Williams, L. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
  30. Henderson, J.; Luca, R. Positive solutions for an impulsive second-order nonlinear boundary value problem. Mediter. J. Math. 2017, 14, 93. [Google Scholar] [CrossRef]
  31. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Luca, R. Positive Solutions for a System of Fractional q-Difference Equations with Multi-Point Boundary Conditions. Fractal Fract. 2024, 8, 70. https://doi.org/10.3390/fractalfract8010070

AMA Style

Luca R. Positive Solutions for a System of Fractional q-Difference Equations with Multi-Point Boundary Conditions. Fractal and Fractional. 2024; 8(1):70. https://doi.org/10.3390/fractalfract8010070

Chicago/Turabian Style

Luca, Rodica. 2024. "Positive Solutions for a System of Fractional q-Difference Equations with Multi-Point Boundary Conditions" Fractal and Fractional 8, no. 1: 70. https://doi.org/10.3390/fractalfract8010070

APA Style

Luca, R. (2024). Positive Solutions for a System of Fractional q-Difference Equations with Multi-Point Boundary Conditions. Fractal and Fractional, 8(1), 70. https://doi.org/10.3390/fractalfract8010070

Article Metrics

Back to TopTop