Advances in Ostrowski-Mercer Like Inequalities within Fractal Space
Abstract
:1. Introduction
2. Preliminaries
- 1.
- type set of irrational number.
- 2.
- type set of irrational number.
- 3.
- =: type set of irrational number.
- 4.
- type set of real number.
- Further more one can observe that forms commutative group. For any ...is the additive identity of , , .For any then there exist such that .
- Also, forms a commutative group. For any .then for each such that .
- If the order < relation is defined on is defined as follows: ⇔ in . Then, is an ordered field.
- 1.
- (Local fractional integration is anti-differentiation) If , then
- 2.
- (Local fractional derivative of is
- 3.
- (Local fractional integration of is
3. Main Results
4. Applications
4.1. Generalized Special Means
- 1.
- The generalized arithmetic mean:
- 2.
- The generalized Weighted arithmetic mean:
- 3.
- The generalized log-p-mean:
4.2. The Quadrature Formula
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Kolwankar, K.M.; Gangal, A.D. Local fractional Calculus: A Calculus for Fractal Space-Time, in Fractals: Theory and Applications in Engineering. Springer: London, UK, 1999; pp. 171–181. [Google Scholar]
- Zhao, Y.; Cheng, D.F.; Yang, X.J. Approximation solutions for local fractional Schrodinger equation in the one-dimensional cantorian system. Adv. Math. 2013, 2013, 291386. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Macmillan: New York, NY, USA, 1983. [Google Scholar]
- Mo, H.; Sui, X. Generalized-convex functions on fractal sets. Abstr. Appl. Anal. 2014, 2014, 254737. [Google Scholar] [CrossRef]
- Sarikaya, M.; Budak, H. Generalized Ostrowski-type inequalities for local fractional integrals. Proc. Am. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
- Mo, H.; Sui, X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractal set ,(0 < ϖ† < 1). Math. Sci. 2017, 11, 241–246. [Google Scholar]
- Zhou, Y.; Du, T. The Simpson-type integral inequalities involving twice local fractional differentiable generalized (s, p) convexity and their applications. Fractals 2023, 31, 1–32. [Google Scholar] [CrossRef]
- Kilicman, A.; Saleh, W. Notions of generalized s-convex functions on fractal sets. J. Inequalities Appl. 2015, 2015, 312. [Google Scholar] [CrossRef]
- Chu, Y.M.; Rashid, S.; Abdeljawad, T.; Khalid, A.; Kalsoom, H. On new generalized unified bounds via generalized exponentially harmonically s-convex functions on fractal sets. Adv. Differ. Equ. 2021, 2021, 218. [Google Scholar] [CrossRef]
- Sanchez, R.V.; Sanabria, J.E. Strongly convexity on fractal sets and some inequalities. Proyecciones 2020, 39, 1–13. [Google Scholar] [CrossRef]
- Luo, C.; Wang, H.; Du, T. Fejer-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Q. Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications. Math. Methods Appl. Sci. 2020, 43, 5776–5787. [Google Scholar] [CrossRef]
- Sun, W.; Xu, R. Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Math. 2021, 6, 10679–10695. [Google Scholar] [CrossRef]
- Sun, W. Local fractional Ostrowski-type inequalities involving generalized h-convex functions and some applications for generalized moments. Fractals 2021, 29, 2150006. [Google Scholar] [CrossRef]
- Razzaq, A.; Rasheed, T.; Shaokat, S. Generalized Hermite-Hadamard type inequalities for generalized F-convex function via local fractional integrals. Chaos Solitons Fractals 2023, 168, 113172. [Google Scholar] [CrossRef]
- Kian, M.; Moslehian, M. Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Adil Khan, M.; Anwar, S.; Khalid, S.; Sayed, Z.M.M.M. Inequalities of the Type Hermite-Hadamard-Jensen-Mercer for Strong Convexity. Math. Probl. Eng. 2021, 2021, 5386488. [Google Scholar] [CrossRef]
- Adil Khan, M.; Husain, Z.; Chu, Y.M. New estimates for Csiszar divergence and zipf-mandelbrot entropy via jensen-mercer’s inequality. Complexity 2020, 2020, 8928691. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Budak, H. Generalizations of fractional Hermite-Hadamard-Mercer-like inequalities for convex functions. AIMS Math. 2021, 6, 9397–9421. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Awan, M.U.; Javed, M.Z.; Kashuri, A.; Noor, M.A.; Noor, K.I. Some new generalized k-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications. AIMS Math. 2022, 7, 3203–3220. [Google Scholar] [CrossRef]
- Al-Sa’di, S.U.; Bibi, M.; Muddassar, M. Some Hermite-Hadamard’s type local fractional integral inequalities for generalized γ-preinvex function with applications. Math. Methods Appl. Sci. 2023, 46, 2941–2954. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Ahmad, H.; Nofal, T.A. Jensen-Mercer inequality and related results in the fractal sense with applications. Fractals 2022, 30, 2240008. [Google Scholar] [CrossRef]
- Xu, P.; Butt, S.I.; Yousaf, S.; Aslam, A.; Zia, T.J. Generalized Fractal Jensen-Mercer and Hermite-Mercer type inequalities via h-convex functions involving Mittag-Leffler kernel. Alex. Eng. J. 2022, 61, 4837–4846. [Google Scholar] [CrossRef]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L. Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications. J. Inequalities Appl. 2022, 2022, 1. [Google Scholar]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejer fractional type inequalities for h-convex and harmonically h-convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Işcan, İ.; Chu, Y.M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020, 2020, 496. [Google Scholar]
- Erden, S.; Sarikaya, M.Z. Generalized Bullen-type inequalities for local fractional integrals and their applications. RGMIA Res. Rep. Collect 2015, 18, 81. [Google Scholar]
- Sun, W. Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization. Fractals 2021, 29, 2150098. [Google Scholar]
- Du, T.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
- Yu, S.; Mohammed, P.O.; Xu, L.; Du, T. An improvement of the power-mean integral inequality in the frame of fractal space and certain related midpoint-type integral inequalities. Fractals 2022, 30, 2250085. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Awan, M.U.; Asif, U.; Javed, M.Z.; Budak, H. Advances in Ostrowski-Mercer Like Inequalities within Fractal Space. Fractal Fract. 2023, 7, 689. https://doi.org/10.3390/fractalfract7090689
Vivas-Cortez M, Awan MU, Asif U, Javed MZ, Budak H. Advances in Ostrowski-Mercer Like Inequalities within Fractal Space. Fractal and Fractional. 2023; 7(9):689. https://doi.org/10.3390/fractalfract7090689
Chicago/Turabian StyleVivas-Cortez, Miguel, Muhammad Uzair Awan, Usama Asif, Muhammad Zakria Javed, and Hüseyin Budak. 2023. "Advances in Ostrowski-Mercer Like Inequalities within Fractal Space" Fractal and Fractional 7, no. 9: 689. https://doi.org/10.3390/fractalfract7090689
APA StyleVivas-Cortez, M., Awan, M. U., Asif, U., Javed, M. Z., & Budak, H. (2023). Advances in Ostrowski-Mercer Like Inequalities within Fractal Space. Fractal and Fractional, 7(9), 689. https://doi.org/10.3390/fractalfract7090689