On Bounds of k-Fractional Integral Operators with Mittag-Leffler Kernels for Several Types of Exponentially Convexities
Abstract
:1. Introduction
2. Main Results
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittag-Leffler, G. Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris. 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Uber den fundamentalsatz in der Teorie der Funktionen E(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2020, 6, 54. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Almoneef, A.A.; Barakat, M.A.; Hyder, A.-A. Analysis of the fractional HIV model under proportional Hadamard-Caputo operators. Fractal Fract. 2023, 7, 220. [Google Scholar] [CrossRef]
- Saadeh, R.; Abdoon, M.A.; Qazza, A.; Berir, M. A numerical solution of generalized Caputo fractional initial value problems. Fractal Fract. 2023, 7, 332. [Google Scholar] [CrossRef]
- Cheng, X.; Zheng, Y.; Zhang, X. Arbitrage in the Hermite binomial market. Fractal Fract. 2022, 6, 702. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Matemticas 2007, 15, 179–192. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Farid, G.; Javed, A. On Hadamard and Fejer-Hadamard inequalities for Caputo k-fractional derivatives. Int. J. Nonlinear Anal. Appl. 2018, 9, 69–81. [Google Scholar]
- Habib, S.; Mubeen, S.; Naeem, M.N. Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Func. 2018, 9, 53–65. [Google Scholar]
- Sarikaya, M.Z.; Dahmani, M.; Kiris, M.E.; Ahmad, F. (k, s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Farid, G.; Mehmood, S.; Nonlaopon, K.; Yan, T. Generalized k-fractional integral operators associated with Pólya-Szegö and Chebyshev types inequalities. Fractal Fract. 2022, 6, 90. [Google Scholar] [CrossRef]
- Mehmood, S.; Farid, G.; Khan, K.A.; Yussouf, M. New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h,m)-convex function. Eng. Appl. Sci. Lett. 2020, 3, 9–18. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Khan, T.U.; Khan, M.A. Generalized conformable fractional operators. J. Comput. Appl. Math. 2019, 346, 378–389. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Zhang, X.; Farid, G.; Yasmeen, H.; Nonlaopon, K. Some generalized formulas of Hadamard-type fractional integral inequalities. J. Funct. Spaces. 2022, 2022, 12. [Google Scholar] [CrossRef]
- Farid, G. Some Riemann-Liouville fractional integral inequalities for convex functions. J. Anal. 2019, 27, 1095–1102. [Google Scholar] [CrossRef]
- Mehmood, S.; Farid, G. m-Convex functions associated with bounds of k-fractional integrals. Adv. Inequal. Appl. 2020, 2020, 20. [Google Scholar]
- Yu, T.; Farid, G.; Mahreen, K.; Jung Chahn, Y.; Shim, S.H. On generalized strongly convex functions and unified integral operators. Math. Probl. Eng. 2021, 2021, 6695781. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farid, G.; Khan, H.S.; Tawfiq, F.M.O.; Ro, J.-S.; Zainab, S. On Bounds of k-Fractional Integral Operators with Mittag-Leffler Kernels for Several Types of Exponentially Convexities. Fractal Fract. 2023, 7, 617. https://doi.org/10.3390/fractalfract7080617
Farid G, Khan HS, Tawfiq FMO, Ro J-S, Zainab S. On Bounds of k-Fractional Integral Operators with Mittag-Leffler Kernels for Several Types of Exponentially Convexities. Fractal and Fractional. 2023; 7(8):617. https://doi.org/10.3390/fractalfract7080617
Chicago/Turabian StyleFarid, Ghulam, Hala Safdar Khan, Ferdous M. O. Tawfiq, Jong-Suk Ro, and Saira Zainab. 2023. "On Bounds of k-Fractional Integral Operators with Mittag-Leffler Kernels for Several Types of Exponentially Convexities" Fractal and Fractional 7, no. 8: 617. https://doi.org/10.3390/fractalfract7080617
APA StyleFarid, G., Khan, H. S., Tawfiq, F. M. O., Ro, J. -S., & Zainab, S. (2023). On Bounds of k-Fractional Integral Operators with Mittag-Leffler Kernels for Several Types of Exponentially Convexities. Fractal and Fractional, 7(8), 617. https://doi.org/10.3390/fractalfract7080617