On Inequalities and Filtration Associated with the Nonlinear Fractional Operator
Abstract
:1. Introduction and Preliminaries
2. Preliminaries
3. A Function as an Infinitesimal Generator
4. Maximization of the Fekete-Szegö Functional
5. Filtration Problems for Some Related Classes
6. Interpolation to Fekete-Szegö Functional
7. Some Filtration Classes
8. Open Problems
- Q1:
- Is this estimate sharp for all and , which satisfy
- Q2:
- What values of and provide the class in connection with the nonlinear operator , consisting of univalent functions?
9. Conjecture
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc Amer. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Elin, M.; Jacobzon, F. Estimates on some functionals over non-linear resolvents. arXiv 2021, arXiv:2105.09582. [Google Scholar] [CrossRef]
- Bracci, F.; Contreras, M.D.; Díaz-Madrigal, S. Continuos Semigroups of Holomorphic Self-Maps of the Unit Disc; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Elin, M.; Reich, S.; Shoikhet, D. Numerical Range of Holomorpic Mappings and Applications; Birkhäuser: Cham, Switzerland, 2019. [Google Scholar]
- Elin, M.; Shoikhet, D. Linearization models for complex dynamical systems. Topics in Univalent Functions, Functions Equations and Semigroup Theory; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar]
- Berkson, E.; Porta, H. Semigroups of analytic functions and composition operators. Michigan Math. J. 1978, 25, 101–115. [Google Scholar] [CrossRef]
- Thomas, D.K.; Tuneski, N.; Vasudevarao, A. Univalent Functions: A Primer; De Gruyter Studies in Mathematics, 69; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Univalent solutions of Briot—Bouquet differential equations. J. Diff. Equations 1985, 56, 297–309. [Google Scholar] [CrossRef]
- Elin, M.; Jacobzon, F.; Tuneski, N. The Fekete–Szegö functional and filtration of generators. Rend. Del Circ. Mat. Palermo Ser. 2 2023, 72, 2811–2829. [Google Scholar] [CrossRef]
- Jack, I.S. Functions starlike and convex of order α. J. London Math. Soc. Ser. 2 1971, 3, 469–474. [Google Scholar] [CrossRef]
- Mocanu, P.T. Une propriété de convexité généralisée dans la théorie de la représentation conformé. Mathematica 1969, 11, 127–133. [Google Scholar]
- Al-Amiri, H. Certain analogy of the α-convex functions. Rev. Roumaine Math. Pures Appl. XXIII 1978, I0, 1449–1454. [Google Scholar]
- Fukui, S. On α-convex functions of order β. Internat. J. Math. Math. Sci. 1997, 20, 769–772. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T.; Reade, M.O. All alpha-convex functions are starlike. Rev. Roumaine Math. Pure Appl. 1972, 17, 1395–1397. [Google Scholar]
- Ravichandran, V.; Darus, V. On a class of α-convex functions. J. Anal. Appl. 2004, 2, 17–25. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, M.; Bukhari, S.Z.H.; Ro, J.-S.; Tchier, F.; Malik, S.N. On Inequalities and Filtration Associated with the Nonlinear Fractional Operator. Fractal Fract. 2023, 7, 726. https://doi.org/10.3390/fractalfract7100726
Nazir M, Bukhari SZH, Ro J-S, Tchier F, Malik SN. On Inequalities and Filtration Associated with the Nonlinear Fractional Operator. Fractal and Fractional. 2023; 7(10):726. https://doi.org/10.3390/fractalfract7100726
Chicago/Turabian StyleNazir, Maryam, Syed Zakir Hussain Bukhari, Jong-Suk Ro, Fairouz Tchier, and Sarfraz Nawaz Malik. 2023. "On Inequalities and Filtration Associated with the Nonlinear Fractional Operator" Fractal and Fractional 7, no. 10: 726. https://doi.org/10.3390/fractalfract7100726
APA StyleNazir, M., Bukhari, S. Z. H., Ro, J. -S., Tchier, F., & Malik, S. N. (2023). On Inequalities and Filtration Associated with the Nonlinear Fractional Operator. Fractal and Fractional, 7(10), 726. https://doi.org/10.3390/fractalfract7100726