Two Integral Representations for the Relaxation Modulus of the Generalized Fractional Zener Model
Abstract
:1. Introduction
2. Preliminaries
- (P1)
- The sets , , and are convex cones, closed under pointwise limits.
- (P2)
- if and only if .
- (P3)
- Let . Then, if and only if .
- (P4)
- Any function has an analytic continuation to the upper half-plane,
- (P5)
- Any function φ from the classes or admits an analytic extension to the complex plane cut along the negative real axis , such that
- (P6)
- Let φ be the analytic extension of a complete Bernstein function to . Then, the limit
- (P7)
- If , then
3. Model Formulation
4. First Integral Representation
5. Examples
5.1. Fractional Derivative of Uniformly Distributed Order
5.2. Convolutional Derivative with Multinomial Mittag-Leffler-Type Kernel
6. Second Integral Representation
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; John Wiley & Sons: London, UK, 2014. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, 2nd ed.; World Scientific: Sinagapore, 2022. [Google Scholar] [CrossRef]
- Mainardi, F. An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 2012, 15, 712–717. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. On the fractional calculus model of viscoelastic behavior. J. Rheol. 1986, 30, 137–148. [Google Scholar] [CrossRef]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: New York, NY, USA, 1997; pp. 223–276. [Google Scholar]
- Atanacković, T.M. On a distributed derivative model of a viscoelastic body. C. R. Méc. 2003, 331, 687–692. [Google Scholar] [CrossRef]
- Atanacković, T.; Konjik, S.; Oparnica, L.; Zorica, D. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011, 2011, 975694. [Google Scholar] [CrossRef]
- Rossikhin, Y.; Shitikova, M. Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib. Dig. 2004, 36, 3–26. [Google Scholar] [CrossRef]
- Konjik, S.; Oparnica, L.; Zorica, D. Distributed-order fractional constitutive stress–strain relation in wave propagation modeling. Z. Angew. Math. Phys. 2019, 70, 51. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Bazhlekov, I. Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model. AIP Conf. Proc. 2018, 2048, 050008. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Janev, M.; Pilipović, S. Restrictions on parameters in distributed order fractional linear constitutive equations. Appl. Math. Model. 2022, 110, 99–111. [Google Scholar] [CrossRef]
- Jelić, S.; Zorica, D. Energy balance for fractional anti-Zener and Zener models in terms of relaxation modulus and creep compliance. Appl. Math. Model. 2023, 123, 688–728. [Google Scholar] [CrossRef]
- Jelić, S.; Zorica, D. Fractionalization of anti-Zener and Zener models via rheological analogy. Acta Mech. 2023, 234, 313–354. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Pilipović, S. Zener model with General Fractional Calculus: Thermodynamical restrictions. Fractal Fract. 2022, 617, 6. [Google Scholar] [CrossRef]
- Kochubei, A. General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal Probability Theory: General Fractional Calculus Approach. Mathematics 2022, 10, 20. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Bazhlekov, I. Subordination principle for generalized fractional Zener models. Fractal Fract. 2023, 7, 298. [Google Scholar] [CrossRef]
- Bobylev, A.; Cercignani, C. The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation. Appl. Math. Lett. 2002, 15, 807–813. [Google Scholar] [CrossRef]
- Kochubei, A. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 2008, 340, 252–281. [Google Scholar] [CrossRef]
- Kubica, A.; Ryszewska, K. Decay of solutions to parabolic-type problem with distributed order Caputo derivative. J. Math. Anal. Appl. 2018, 465, 75–99. [Google Scholar] [CrossRef]
- Bazhlekova, E. Estimates for a general fractional relaxation equation and application to an inverse source problem. Math. Methods Appl. Sci. 2018, 41, 9018–9026. [Google Scholar] [CrossRef]
- Bazhlekova, E. Subordination Principle for Generalized Fractional Evolution Equations. Ph.D. Dissertation, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria, 2022. [Google Scholar]
- Awad, E.; Sandev, T.; Metzler, R.; Chechkin, A. Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case. Chaos Solitons Fractals 2021, 152, 111357. [Google Scholar] [CrossRef]
- Iomin, A.; Metzler, R.; Sandev, T. Topological Subordination in Quantum Mechanics. Fractal Fract. 2023, 7, 431. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A.; Penson, K.A. Non-Debye Relaxations: The Ups and Downs of the Stretched Exponential vs. Mittag-Leffler’s Matchings. Fractal Fract. 2021, 5, 265. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A. Subordination and memory dependent kinetics in diffusion and relaxation phenomena. Fract. Calc. Appl. Anal. 2023, 26, 480–512. [Google Scholar] [CrossRef]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions: Theory and Applications; De Gruyter: Berlin, Germany, 2010. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1971; Volume 2. [Google Scholar]
- Hadid, S.; Luchko, Y. An operational method for solving fractional differential equations of an arbitrary real order. Panam. Math. J. 1996, 6, 57–73. [Google Scholar]
- Bazhlekova, E. Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives. Fract. Calc. Appl. Anal. 2021, 24, 88–111. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Pshenichnov, S. Wave propagation in viscoelastic half-space with memory functions of Mittag-Leffler type. Int. J. Appl. Math. 2021, 34, 423–440. [Google Scholar] [CrossRef]
- Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Kiryakova, V.; Paneva-Konovska, J. Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type. Int. J. Appl. Math. 2022, 35, 745–768. [Google Scholar] [CrossRef]
- Sandev, T.; Iomin, A. Special Functions of Fractional Calculus: Applications to Diffusion and Random Search Processes; World Scientific: Singapore, 2022. [Google Scholar] [CrossRef]
- Kürt, C.; Fernandez, A.; Özarslan, M. Two unified families of bivariate Mittag-Leffler functions. Appl. Math. Comput. 2023, 443, 127785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazhlekova, E.; Pshenichnov, S. Two Integral Representations for the Relaxation Modulus of the Generalized Fractional Zener Model. Fractal Fract. 2023, 7, 636. https://doi.org/10.3390/fractalfract7080636
Bazhlekova E, Pshenichnov S. Two Integral Representations for the Relaxation Modulus of the Generalized Fractional Zener Model. Fractal and Fractional. 2023; 7(8):636. https://doi.org/10.3390/fractalfract7080636
Chicago/Turabian StyleBazhlekova, Emilia, and Sergey Pshenichnov. 2023. "Two Integral Representations for the Relaxation Modulus of the Generalized Fractional Zener Model" Fractal and Fractional 7, no. 8: 636. https://doi.org/10.3390/fractalfract7080636
APA StyleBazhlekova, E., & Pshenichnov, S. (2023). Two Integral Representations for the Relaxation Modulus of the Generalized Fractional Zener Model. Fractal and Fractional, 7(8), 636. https://doi.org/10.3390/fractalfract7080636