Multiplicity of Positive Solutions to Hadamard-Type Fractional Relativistic Oscillator Equation with p-Laplacian Operator
Abstract
1. Introduction
2. Preliminaries
- (i)
- and for , where .
- (ii)
- for .
- (iii)
- for with .
- A priori bound
3. Main Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef][Green Version]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef][Green Version]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 270, 1–15. [Google Scholar] [CrossRef][Green Version]
- Ahmad, B.; Ntouyas, S.K. Nonlocal initial value problems for Hadamard-type fractional differential equations and inclusions. Rocky Mount. J. Math. 2018, 48, 1043–1068. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Initial-value problems for hybrid Hadamard fractional differential equations. Electron. J. Diff. Eq. 2014, 2014, 161. [Google Scholar]
- Jiang, J.; O’Regan, D.; Xu, J.; Cui, Y. Positive solutions for a hadamard fractional p-laplacian three-point boundary value problem. Mathematics 2019, 7, 439. [Google Scholar] [CrossRef][Green Version]
- Wang, J.R.; Zhang, Y. On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 2015, 39, 85–90. [Google Scholar] [CrossRef]
- Wang, G.T.; Pei, K.; Agarwal, R.P.; Zhang, L.H.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Zhai, C.; Wang, W.; Li, H. A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions. J. Inequal. Appl. 2018, 2018, 207. [Google Scholar] [CrossRef][Green Version]
- Yang, W. Positive solutions for singular Hadamard fractional differential system with four-point coupled boundary conditions. J. Appl. Math. Comput. 2015, 49, 357–381. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, J.; O’Regan, D. Positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems. Mathematics 2020, 8, 308. [Google Scholar] [CrossRef][Green Version]
- Rao, S.N.; Singh, M.; Meetei, M.Z. Multiplicity of positive solutions for Hadamard fractional differential equations with p-Laplacian operator. Bound. Value Probl. 2020, 2020, 43. [Google Scholar] [CrossRef][Green Version]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bartnik, R.; Simon, L. Spacelike hypersurfaces with prescribed boundary values and mean curvature. Comm. Math. Phys. 1982, 87, 131–152. [Google Scholar] [CrossRef]
- Hutten, E.H. Relativistic (non-linear) oscillator. Nature 1965, 205, 892. [Google Scholar] [CrossRef]
- Mitchell, T.P.; Pope, D.L. On the relativistic damped oscillator. J. Soc. Indust. Appl. Math. 1962, 10, 49–61. [Google Scholar] [CrossRef]
- Bereanu, C.; Jebelean, P.; Mawhin, J. Variational methods for nonlinear perturbations of singular φ-Laplacian. Rend. Lincei Mat. Appl. 2011, 22, 89–111. [Google Scholar]
- Jebelean, P.; Mawhin, J.; Şerban, C. Multiple periodic solutions for perturbed relativistic pendulum systems. Proc. Am. Math. Soc. 2015, 143, 3029–3039. [Google Scholar] [CrossRef]
- Mawhin, J. Multiplicity of solutions of variational systems involving ϕ-Laplacians with singular ϕ and periodic nonlinearities. Discrete Contin. Dyn. Syst. Ser. A 2012, 32, 4015–4026. [Google Scholar] [CrossRef]
- Coelho, I.; Corsato, C.; Obersnel, F.; Omari, P. Positive solutions of the Dirichlet problem for the one-dimensional Minkowskicurvature equation. Adv. Nonlinear Stud. 2012, 12, 621–638. [Google Scholar] [CrossRef]
- Bereanu, C.; Mawhin, J. Boundary value problems for some nonlinear systems with singular ϕ-laplacian. J. Fixed Point Theory Appl. 2008, 4, 57–75. [Google Scholar] [CrossRef]
- Arcoya, D.; Bereanu, C.; Torres, P.J. Critical point theory for the Lorentz force equation. Arch. Ration. Mech. Anal. 2019, 232, 1685–1724. [Google Scholar] [CrossRef]
- Garzón, M.; Torres, P.J. Periodic solutions for the Lorentz force equation with singular potentials. Nonlinear Anal. Real World Appl. 2020, 56, 103162. [Google Scholar] [CrossRef]
- Leggett, R.W.; Williams, L.R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T. Multiplicity of Positive Solutions to Hadamard-Type Fractional Relativistic Oscillator Equation with p-Laplacian Operator. Fractal Fract. 2023, 7, 427. https://doi.org/10.3390/fractalfract7060427
Shen T. Multiplicity of Positive Solutions to Hadamard-Type Fractional Relativistic Oscillator Equation with p-Laplacian Operator. Fractal and Fractional. 2023; 7(6):427. https://doi.org/10.3390/fractalfract7060427
Chicago/Turabian StyleShen, Tengfei. 2023. "Multiplicity of Positive Solutions to Hadamard-Type Fractional Relativistic Oscillator Equation with p-Laplacian Operator" Fractal and Fractional 7, no. 6: 427. https://doi.org/10.3390/fractalfract7060427
APA StyleShen, T. (2023). Multiplicity of Positive Solutions to Hadamard-Type Fractional Relativistic Oscillator Equation with p-Laplacian Operator. Fractal and Fractional, 7(6), 427. https://doi.org/10.3390/fractalfract7060427