Fractional Order Sequential Minimal Optimization Classification Method
Abstract
:1. Introduction
- According to the fractional order calculus, the fractional derivative of Lagrange multiplier is obtained.
- The fractional expression of the objective function can be obtained; with further calculations, updated value calculation expressions can be obtained.
- A fractional order sequential minimum optimization method is proposed for classification.
- A large number of experiments are performed. There are linearly divisible cases and nonlinear cases, and there are binary cases and multi-categorical examples. The experimental results show that the fractional order sequential minimum optimization algorithm is better than the traditional SMO method.
2. Fractional Order Calculus
3. Methods
3.1. Fractional Order Expressions
3.2. Fractional Order SMO
3.3. FOSMO Classification Algorithm
4. Experiments
4.1. Linear Case
4.2. Data_Test1
4.3. Sonar Data
4.4. Multiclassification Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Platt, J.C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. In Advances in Kernel Methods-Support Vector Learning; Microsoft: Washington, DC, USA, 1998; pp. 212–223. [Google Scholar]
- Rifkin, R.M. Everything Old is New Again: A Fresh Look at Historical Approaches in Machine Learning; Massachusetts Institute of Technology: Cambridge, MA, USA, 2002. [Google Scholar]
- Cao, L.J.; Keerthi, S.S.; Ong, C.J.; Uvaraj, P.; Fu, X.J.; Lee, H.P. Developing parallel sequential minimal optimization for fast training support vector machine. Neurocomputing 2006, 70, 93–104. [Google Scholar] [CrossRef]
- Nakanishi, K.M.; Fujii, K.; Todo, S. Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Res. 2021, 2, 043158. [Google Scholar] [CrossRef]
- Kayadelen, C.; Altay, G.; Onal, S.; Onal, Y. Sequential minimal optimization for local scour around bridge piers. Mar. Georesources Geotechnol. 2022, 40, 462–472. [Google Scholar] [CrossRef]
- Noronha, D.H.; Torquato, M.F.; Fernandes, M.A. A parallel implementation of sequential minimal optimization on FPGA. Microprocess Microsyst. 2019, 69, 138–151. [Google Scholar] [CrossRef]
- Naveed, H.; Khan, G.; Khan, A.U.; Siddiqi, A.; Khan, M.U.G. Human activity recognition using mixture of heterogeneous features and sequential minimal optimization. Int. J. Mach. Learn. Cybern. 2019, 10, 2329–2340. [Google Scholar] [CrossRef]
- Gadal, S.; Mokhtar, R.; Abdelhaq, M.; Alsaqour, R.; Ali, E.S.; Saeed, R. Machine Learning-Based Anomaly Detection Using K-Mean Array and Sequential Minimal Optimization. Electronics 2022, 11, 2158. [Google Scholar] [CrossRef]
- Rani, K.V.; Jawhar, S.J. Automatic segmentation and classification of lung tumour using advance sequential minimal optimisation techniques. IET Image Process 2020, 14, 3355–3365. [Google Scholar] [CrossRef]
- Pentrakan, A.; Yang, C.C.; Wong, W.K. How Well Does a Sequential Minimal Optimization Model Perform in Predicting Medicine Prices for Procurement System? Int. J. Environ. Res. Public Health 2021, 18, 5523. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Chen, W.; Ly, H.-B.; Ho, L.S.; Omidvar, E.; Tran, V.P.; Bui, D.T. A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. Sustainability 2019, 11, 6323. [Google Scholar] [CrossRef]
- Ramasamy, L.K.; Padinjappurathu, S.G.; Kadry, S.; Damaševičius, R. Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier. PeerJ Comput. Sci. 2021, 7, e456. [Google Scholar] [CrossRef] [PubMed]
- Sornalakshmi, M.; Balamurali, S.; Venkatesulu, M.; Krishnan, M.N.; Ramasamy, L.K.; Kadry, S.; Manogaran, G.; Hsu, C.-H.; Muthu, B.A. RETRACTED ARTICLE: Hybrid method for mining rules based on enhanced Apriori algorithm with sequential minimal optimization in healthcare industry. Neural Comput. Appl. 2022, 34, 10597–10610. [Google Scholar] [CrossRef]
- Mutlu, G.; Acı, Ç.İ. SVM-SMO-SGD: A hybrid-parallel support vector machine algorithm using sequential minimal optimization with stochastic gradient descent. Parallel Comput. 2022, 113, 102955. [Google Scholar] [CrossRef]
- Safari, M.J.S.; Meshram, S.G.; Khosravi, K.; Moatamed, A. Suspended Sediment Modeling Using Sequential Minimal Optimization Regression and Isotonic Regression Algorithms Integrated with an Iterative Classifier Optimizer. Pure Appl. Geophys. 2022, 179, 3751–3765. [Google Scholar] [CrossRef]
- Aldemir, A. Water quality modelling using combination of support vector regression with sequential minimal optimization for Akkopru stream in van, Turkey. Fresenius Environ. Bull. 2021, 30, 1518–1526. [Google Scholar]
- Yücelbaş, Ş.; Yücelbaş, C. Autism spectrum disorder detection using sequential minimal optimization-support vector machine hybrid classifier according to history of jaundice and family autism in children. Concurr. Comput. Pr. Exp. 2022, 34, e6498. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Hussain, I. Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan. Telecommun. Policy 2022, 46, 102370. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, S.; Guo, M.; Wang, H.; Zhou, Q.; Zhang, X. Multi-UAV trajectory planning using gradient-based sequence minimal optimization. Robot. Auton. Syst. 2021, 137, 103728. [Google Scholar] [CrossRef]
- Bisori, R.; Lapucci, M.; Sciandrone, M. A study on sequential minimal optimization methods for standard quadratic problems. Q. J. Oper. Res. 2022, 20, 685–712. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Z.; Lee, T.-Y. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides. BMC Bioinform. 2021, 22, 28. [Google Scholar] [CrossRef]
- Yu, L.; Ma, X.; Li, S. A fast conjugate functional gain sequential minimal optimization training algorithm for LS-SVM model. Neural Comput. Appl. 2022, 35, 6095–6113. [Google Scholar] [CrossRef]
- Gu, B.; Shan, Y.Y.; Quan, X.; Zheng, G.S. Accelerating Sequential Minimal Optimization via Stochastic Subgradient Descent. IEEE Trans. Cybern. 2021, 51, 2215–2223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Jiang, M.; Huang, Y. Formal Verification of Fractional-Order PID Control Systems Using High-er-Order Logic. Fractal Fract. 2022, 6, 485. [Google Scholar] [CrossRef]
- Podlubng, I. Fractional Differential Equations; Technical University of Kosice: Košice, Slovak Repubic, 1999. [Google Scholar]
- Zhao, C.; Li, Y.; Lu, T. Fractional System Analysis and Design; National Defence Industry Press: Arlington, VA, USA, 2011. [Google Scholar]
- Li, S.; Zhao, C.; Guan, Y.; Shi, Z.; Wang, R.; Li, X.; Ye, S. Formalization of Consistency of Fractional Calculus in HOL4. Comput. Sci. 2016, 43, 23–27. [Google Scholar]
- Ahmed, S.; Shah, K.; Jahan, S.; Abdeljawad, T. An efficient method for the fractional electric circuits based on Fibonacci wavelet. Results Phys. 2023, 52, 106753. [Google Scholar] [CrossRef]
- Avcı, İ.; Hussain, A.; Kanwal, T. Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis. Chaos Solitons Fractals 2023, 174, 113845. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Hyperthermia therapy of cancerous tumor sitting in breast via analytical fractional model. Comput. Biol. Med. 2023, 164, 107271. [Google Scholar] [CrossRef]
- Alfwzan, W.; Yao, S.-W.; Allehiany, F.; Ahmad, S.; Saifullah, S.; Inc, M. Analysis of fractional non-linear tsunami shallow-water mathematical model with singular and non singular kernels. Results Phys. 2023, 52, 106707. [Google Scholar] [CrossRef]
- Xu, C.; Yu, Y.; Ren, G.; Sun, Y.; Si, X. Stability analysis and optimal control of a fractional-order generalized SEIR model for the COVID-19 pandemic. Appl. Math. Comput. 2023, 457, 128210. [Google Scholar] [CrossRef]
- Ducharne, B.; Sebald, G. Fractional derivatives for the core losses prediction: State of the art and beyond. J. Magn. Magn. Mater. 2022, 563, 169961. [Google Scholar] [CrossRef]
- Rysak, A.; Sedlmayr, M. Damping efficiency of the Duffing system with additional fractional terms. Appl. Math. Model. 2022, 111, 521–533. [Google Scholar] [CrossRef]
- Yu, L.; Li, S.; Liu, S. Fast Support Vector Machine Training Via Three-term Conjugate-link SMO Algorithm. Pattern Recognit. 2023, 139, 109478. [Google Scholar] [CrossRef]
- Wang, C.; Kou, X.; Jiang, T.; Chen, H.; Li, G.; Li, F. Transient stability assessment in bulk power grids using sequential minimal optimization based support vector machine with pinball loss. Electr. Power Syst. Res. 2023, 214, 108803. [Google Scholar] [CrossRef]
Derivative Order | Number of Correct-Categories | Number of Error Categories | Accuracy |
---|---|---|---|
0.1 | 61 | 19 | 76.25% |
0.2 | 64 | 16 | 80% |
0.3 | 64 | 16 | 80% |
0.4 | 65 | 15 | 81.25% |
0.5 | 65 | 15 | 81.25% |
0.6 | 65 | 15 | 81.25% |
0.7 | 65 | 15 | 81.25% |
0.8 | 68 | 12 | 85% |
0.9 | 66 | 14 | 82.5% |
1.0 | 75 | 5 | 93.75% |
1.1 | 65 | 15 | 81.25% |
1.2 | 67 | 13 | 83.75% |
1.3 | 65 | 15 | 81.25% |
1.4 | 76 | 4 | 95% |
1.5 | 71 | 9 | 88.75% |
1.6 | 60 | 20 | 75% |
1.7 | 47 | 33 | 58.75% |
1.8 | 49 | 31 | 61.25% |
1.9 | 39 | 41 | 48.75% |
Derivative Order | Number of Correct-Categories | Number of Error Categories | Accuracy |
---|---|---|---|
0.1 | 60 | 20 | 75% |
0.2 | 70 | 10 | 87.5% |
0.3 | 76 | 4 | 95% |
0.4 | 78 | 2 | 97.5% |
0.5 | 67 | 13 | 83.75% |
0.6 | 70 | 10 | 87.5% |
0.7 | 67 | 13 | 83.75% |
0.8 | 77 | 3 | 96.25% |
0.9 | 74 | 6 | 92.5% |
1.0 | 73 | 7 | 91.25% |
Derivative Order | Number of Correct-Categories | Number of Error Categories | Accuracy |
---|---|---|---|
0.1 | 100 | 100 | 50% |
0.2 | 100 | 100 | 50% |
0.3 | 100 | 100 | 50% |
0.4 | 100 | 100 | 50% |
0.5 | 100 | 100 | 50% |
0.6 | 100 | 100 | 50% |
0.7 | 100 | 100 | 50% |
0.8 | 100 | 100 | 50% |
0.9 | 100 | 100 | 50% |
1.0 | 192 | 8 | 96% |
1.1 | 151 | 49 | 75.5% |
1.2 | 150 | 50 | 75% |
1.3 | 150 | 50 | 75% |
1.4 | 166 | 34 | 83% |
1.5 | 149 | 51 | 74.5% |
1.6 | 166 | 34 | 83% |
1.7 | 101 | 99 | 50.5% |
1.8 | 100 | 100 | 50% |
1.9 | 100 | 100 | 50% |
Derivative Order | Number of Correct-Categories | Number of Error Categories | Accuracy |
---|---|---|---|
0.95 | 100 | 100 | 50% |
0.96 | 193 | 7 | 96.5% |
0.97 | 152 | 48 | 76% |
0.98 | 100 | 100 | 50% |
0.99 | 100 | 100 | 50% |
1.00 | 192 | 8 | 96% |
1.01 | 100 | 100 | 50% |
1.02 | 100 | 100 | 50% |
1.03 | 193 | 7 | 96.5% |
1.04 | 192 | 8 | 96% |
1.05 | 137 | 63 | 68.5% |
Derivative Order | Accuracy |
---|---|
0.1 | 47.12% |
0.2 | 47.12% |
0.3 | 47.12% |
0.4 | 47.12% |
0.5 | 47.12% |
0.6 | 47.12% |
0.7 | 47.12% |
0.8 | 47.12% |
0.9 | 75% |
1.0 | 78.85% |
1.1 | 95.67% |
1.2 | 47.6% |
1.3 | 94.23% |
1.4 | 49.52% |
1.5 | 47.12% |
1.6 | 46.63% |
1.7 | 46.63% |
1.8 | 46.63% |
1.9 | 46.63% |
Derivative Order | Training Accuracy | Testing Accuracy | Accuracy |
---|---|---|---|
0.1 | 0.9500 | 0.9200 | 0.9400 |
0.2 | 0.9500 | 0.9200 | 0.9400 |
0.3 | 0.9500 | 0.9200 | 0.9400 |
0.4 | 0.9500 | 0.9200 | 0.9400 |
0.5 | 0.9500 | 0.9400 | 0.9467 |
0.6 | 0.9500 | 0.9200 | 0.9400 |
0.7 | 0.9500 | 0.9400 | 0.9467 |
0.8 | 0.9600 | 0.9400 | 0.9533 |
0.9 | 0.9600 | 0.9400 | 0.9533 |
1.0 | 0.9600 | 0.9200 | 0.9467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Dai, L.; Huang, Y. Fractional Order Sequential Minimal Optimization Classification Method. Fractal Fract. 2023, 7, 637. https://doi.org/10.3390/fractalfract7080637
Zhao C, Dai L, Huang Y. Fractional Order Sequential Minimal Optimization Classification Method. Fractal and Fractional. 2023; 7(8):637. https://doi.org/10.3390/fractalfract7080637
Chicago/Turabian StyleZhao, Chunna, Licai Dai, and Yaqun Huang. 2023. "Fractional Order Sequential Minimal Optimization Classification Method" Fractal and Fractional 7, no. 8: 637. https://doi.org/10.3390/fractalfract7080637
APA StyleZhao, C., Dai, L., & Huang, Y. (2023). Fractional Order Sequential Minimal Optimization Classification Method. Fractal and Fractional, 7(8), 637. https://doi.org/10.3390/fractalfract7080637