Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations
Abstract
:1. Introduction
- We present a new theorem concerning the Gronwall inequality for generalized variable-order discrete using the Caputo Nabla fractional variable-order operator.
- We introduce novel variable-order fractional discrete neural networks.
- The uniqueness of the solution of the system under consideration was examined with the help of the contracting mapping principle and inequality approaches.
- The stability of variable-order fractional discrete neural networks is addressed, and a finite-time stability approach is used.
- Numerical simulations are illustrated to reflect theoretical conclusions.
2. Mathematical Background
3. A Gronwall Inequality
4. Finite–Time Stability of Nabla Variable-Order Neural Networks
5. Numerical Simulations
- Figure 2, Figure 3 and Figure 4 indicate that the unique equilibrium point of the variable-order fractional neural networks (45), with the variable-order function described in (2), and the chosen set of parameters, is stable in a finite time based on Theorems 2 and 3 for multiple initial conditions , and , respectively.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; North Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Zhou, J.C.; Salahshour, S.; Ahmadian, A.; Senu, N. Modeling the dynamics of COVID-19 using fractal-fractional operator with a case study. Results Phys. 2022, 33, 105103. [Google Scholar] [CrossRef]
- Hendy, M.H.; Amin, M.M.; Ezzat, M.A. Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer. J. Therm. Stress. 2019, 42, 1298–1315. [Google Scholar] [CrossRef]
- Shymanskyi, V.; Sokolovskyy, I.; Sokolovskyy, Y.; Bubnyak, T. Variational Method for Solving the Time-Fractal Heat Conduction Problem in the Claydite-Block Construction. In International Conference on Computer Science, Engineering and Education Applications; Springer International Publishing: Cham, Switerland, 2022; pp. 97–106. [Google Scholar]
- Batiha, I.M.; Alshorm, S.; Ouannas, A.; Momani, S.; Ababneh, O.Y.; Albdareen, M. Modified three-point fractional formulas with Richardson extrapolation. Mathematics 2022, 10, 3489. [Google Scholar] [CrossRef]
- Hollkamp, J.P.; Semperlotti, F. Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J. Sound Vib. 2020, 465, 115035. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Y.; Li, Y.; Cui, N.; Duan, B.; Zhang, C. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries. ISA Trans. 2020, 97, 448–457. [Google Scholar] [CrossRef]
- Rezapour, S.; Souid, M.S.; Bouazza, Z.; Hussain, A.; Etemad, S. On the fractional variable order thermostat model: Existence theory on cones via piece-wise constant functions. J. Funct. Spaces 2022, 2022, 8053620. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Wei, H.; Chen, Y.Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193, 185–192. [Google Scholar] [CrossRef]
- Atici, F.M.; Sengul, S. Modeling with fractional difference equations. J. Math. Anal. Appl. 2010, 369, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bastos, N.R.; Ferreira, R.A.; Torres, D.F. Discrete-time fractional variational problems. Signal Process. 2011, 91, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A. Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 2010, 51, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Bensid Ahmed, S.; Ouannas, A.; Al Horani, M.; Grassi, G. The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy. Mathematics 2022, 10, 3173. [Google Scholar] [CrossRef]
- Oziablo, P.; Mozyrska, D.; Wyrwas, M. Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay. Entropy 2020, 22, 771. [Google Scholar] [CrossRef] [PubMed]
- Baleanu, D.; Wu, G.C. Some further results of the laplace transform for variable–order fractional difference equations. Fract. Calc. Appl. Anal. 2019, 22, 1641–1654. [Google Scholar] [CrossRef]
- Dababneh, A.; Djenina, N.; Ouannas, A.; Grassi, G.; Batiha, I.M.; Jebril, I.H. A new incommensurate fractional-order discrete COVID-19 model with vaccinated individuals compartment. Fractal Fract. 2022, 6, 456. [Google Scholar] [CrossRef]
- Saadeh, R.; Abbes, A.; Al-Husban, A.; Ouannas, A.; Grassi, G. The Fractional Discrete Predator–Prey Model: Chaos, Control and Synchronization. Fractal Fract. 2023, 7, 120. [Google Scholar] [CrossRef]
- Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y. Generalized Gronwall inequalities and their applications to fractional differential equations. J. Inequalities Appl. 2013, 2013, 549. [Google Scholar] [CrossRef] [Green Version]
- Feckan, M.; Pospisil, M. Note on fractional difference Gronwall inequalities. Electron. J. Qual. Theory Differ. Equ. 2014, 2014, 1–18. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Alzabut, J.; Baleanu, D. A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems. J. Inequalities Appl. 2016, 2016, 240. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, A.B.; Al-Refai, M.; Al-Rawashdeh, A. On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems. J. King Saud-Univ.-Sci. 2016, 28, 103–110. [Google Scholar] [CrossRef]
- Mei, Z.D.; Peng, J.G.; Gao, J.H. Existence and uniqueness of solutions for nonlinear general fractional differential equations in Banach spaces. Indag. Math. 2015, 26, 669–678. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y. Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discret. Dyn. Nat. Soc. 2013, 2013, 459161. [Google Scholar] [CrossRef] [Green Version]
- Alzabut, J.; Abdeljawad, T. A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system. Appl. Anal. Discret. Math. 2018, 12, 36–48. [Google Scholar] [CrossRef]
- Liu, H.; Shen, Y.; Zhao, X. Finite-time stabilization and boundedness of switched linear system under state-dependent switching. J. Frankl. Inst. 2013, 350, 541–555. [Google Scholar] [CrossRef]
- Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C. Finite-time stability of linear time-varying systems with jumps. Automatica 2009, 45, 1354–1358. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D. Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 299–308. [Google Scholar] [CrossRef]
- Du, F.; Jia, B. Finite time stability of fractional delay difference systems: A discrete delayed Mittag–Leffler matrix function approach. Chaos Solitons Fractals 2020, 141, 110430. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, S. Finite-time stability of ABC type fractional delay difference equations. Chaos Solitons Fractals 2021, 152, 111430. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Huang, C. Exploration of bifurcation for a fractional-order BAM neural network with n+ 2 neurons and mixed time delays. Chaos Solitons Fractals 2022, 159, 112117. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Li, P.; Yao, L.; Qin, Q. Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks. Nonlinear Anal. Model. Control. 2022, 27, 1030–1053. [Google Scholar] [CrossRef]
- Ou, W.; Xu, C.; Cui, Q.; Liu, Z.; Pang, Y.; Farman, M.; Ahmad, S.; Zeb, A. Mathematical study on bifurcation dynamics and control mechanism of tri-neuron bidirectional associative memory neural networks including delay. Math. Methods Appl. Sci. 2023; Early View. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Aouiti, C. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107043. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, L.; Huang, C.; Xiao, M. Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays. Math. Comput. Simul. 2021, 181, 562–580. [Google Scholar] [CrossRef]
- Wu, G.C.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K.T. Mittag–Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- You, X.; Song, Q.; Zhao, Z. Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw. 2020, 123, 248–260. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Oussaeif, T.E.; Grassi, G.; Batiha, I.M.; Momani, S. On Variable-Order Fractional Discrete Neural Networks: Solvability and Stability. Fractal Fract. 2022, 6, 119. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Grassi, G.; Oussaeif, T.E. Nonlinear nabla variable-order fractional discrete systems: Asymptotic stability and application to neural networks. J. Comput. Appl. Math. 2023, 423, 114939. [Google Scholar] [CrossRef]
- Almatroud, O.A.; Hioual, A.; Ouannas, A.; Sawalha, M.M.; Alshammari, S.; Alshammari, M. On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability. Fractal Fract. 2023, 7, 118. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Huang, C.; Niezabitowski, M.; Bagdasar, O. Stability of discrete-time fractional-order time-delayed neural networks in complex field. Math. Methods Appl. Sci. 2021, 44, 419–440. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Momani, S.; Oussaeif, T.E. Finite-Time Stability of ABC Type ℏ-Fractional Discrete Neural Networks: Gronwall Inequality and Stability Criterion. In Proceedings of the 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 14–16 March 2023; pp. 1–6. [Google Scholar]
- Momani, S.; Batiha, I.M.; Hioual, A.; Ouannas, A. Fractional Neural Networks: Finite time stability and its application to synchronization. In Proceedings of the 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 14–16 March 2023; pp. 1–5. [Google Scholar]
- Wei, Y.; Wei, Y.; Chen, Y.; Wang, Y. Mittag–Leffler stability of nabla discrete fractional-order dynamic systems. Nonlinear Dyn. 2020, 101, 407–417. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mert, R.; Torres, D.F. Variable order Mittag–Leffler fractional operators on isolated time scales and application to the calculus of variations. In Fractional Derivatives with Mittag–Leffler Kernel: Trends and Applications in Science and Engineering; Springer: Cham, Switerland, 2019; pp. 35–47. [Google Scholar]
- Du, F.; Jia, B. A generalized fractional (q, h)–Gronwall inequality and its applications to nonlinear fractional delay (q, h)-difference systems. Math. Methods Appl. Sci. 2021, 44, 10513–10529. [Google Scholar] [CrossRef]
- Hioual, A.; Oussaeif, T.E.; Ouannas, A.; Grassi, G.; Batiha, I.M.; Momani, S. New results for the stability of fractional-order discrete-time neural networks. Alex. Eng. J. 2022, 61, 10359–10369. [Google Scholar] [CrossRef]
- Huang, L.L.; Park, J.H.; Wu, G.C.; Mo, Z.W. Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 2020, 370, 112633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamadneh, T.; Hioual, A.; Alsayyed, O.; Al-Khassawneh, Y.A.; Al-Husban, A.; Ouannas, A. Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations. Fractal Fract. 2023, 7, 616. https://doi.org/10.3390/fractalfract7080616
Hamadneh T, Hioual A, Alsayyed O, Al-Khassawneh YA, Al-Husban A, Ouannas A. Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations. Fractal and Fractional. 2023; 7(8):616. https://doi.org/10.3390/fractalfract7080616
Chicago/Turabian StyleHamadneh, Tareq, Amel Hioual, Omar Alsayyed, Yazan Alaya Al-Khassawneh, Abdallah Al-Husban, and Adel Ouannas. 2023. "Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations" Fractal and Fractional 7, no. 8: 616. https://doi.org/10.3390/fractalfract7080616
APA StyleHamadneh, T., Hioual, A., Alsayyed, O., Al-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations. Fractal and Fractional, 7(8), 616. https://doi.org/10.3390/fractalfract7080616