Vertical Distribution of Suspended Sediment Concentration in the Unsaturated Jingjiang Reach, Yangtze River, China
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Hausdorff Fractal Space
2.3.2. Hausdorff Fractal Deviation for Non-Equilibrium SSC Vertical Profile
3. Results
3.1. Comparison of Formulae in Describing Vertical Sediment Profiles
3.2. Parameters That Influence γ
4. Discussion
Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, H.C.; Zhang, X.F.; Xu, Q.X. Unprecedented sedimentation in response to emerging cascade reservoirs in the upper Yangtze River Basin. Catena 2022, 209, 105833. [Google Scholar] [CrossRef]
- Guo, X.H.; Qu, G.; Liu, Y.; Liu, X.Y. Sediment transport of different particle size groups in the downstream channel after operation of the Three Gorges Project. J. Lake Sci. 2020, 32, 564–572. [Google Scholar] [CrossRef]
- Li, X.; Xia, J.; Li, J.; Zhou, M. Adjustments in reach-scale bankfull geometry of a braided reach undergoing contrasting channel evolution processes. Arab. J. Geosci. 2019, 12, 535. [Google Scholar] [CrossRef]
- Xia, J.; Deng, S.; Zhou, M.; Lu, J.; Xu, Q. Geomorphic response of the Jingjiang Reach to the Three Gorges Project operation. Earth Surf. Process. Landf. 2017, 42, 866–876. [Google Scholar] [CrossRef]
- Petts, G.E.; Gurnell, A.M. Dams and geomorphology: Research progress and future directions. Geomorphology 2005, 71, 27–47. [Google Scholar] [CrossRef]
- Mccartney, M.P.; Shiferaw, A.; Seleshi, Y. Estimating environmental flow requirements downstream of the Chara Chara weir on the Blue Nile River. Hydrol. Process. 2009, 23, 3751–3758. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Kamboj, V.; Kamboj, N.; Sharma, A.K. A review on general characteristics, classification and degradation of river systems. Environ. Degrad. Causes Remediat. Strateg. 2020, 1, 47–62. [Google Scholar]
- Yang, X.H.; Xiong, H.B.; Li, D.F.; Li, Y.T.; Hu, Y. Disproportional erosion of the middle-lower Yangtze River following the operation of the Three Gorges Dam. Sci. Total Environ. 2023, 859, 160264. [Google Scholar] [CrossRef]
- Huang, H.Q.; Deng, C.; Nanson, G.C.; Fan, B.; Liu, X.; Liu, T.; Ma, Y. A test of equilibrium theory and a demonstration of its practical application for predicting the morphodynamics of the Yangtze River. Earth Surf. Process. Landf. 2014, 39, 669–675. [Google Scholar] [CrossRef]
- Zuo, S.; Yang, C.; Fu, G.; Xie, H. Variation of water and sediment flux and its influence on the Yangtze River Estuary. Mar. Geol. Front. 2022, 38, 56–64. [Google Scholar] [CrossRef]
- Zuo, S.H.; Zhang, N.C.; Li, B.; Yang, H. Dynamics reasons and temporal-spatial variations of suspended sediment condition in the sea area of Yangshan deep-water harbor. J. East China Norm. Univ. 2009, 3, 72–82. [Google Scholar]
- Li, Y.; Sun, Z.; Deng, J. A Study on Riverbed Erosion Downstream from the Three Gorges Reservoir. J. Basic Sci. Eng. 2003, 11, 283–295. (In Chinese) [Google Scholar]
- Liu, X.Q. Research on riverbed adjustment response of jingjiang reach under the change of flow and sediment. Appl. Ecol. Environ. Res. 2017, 15, 911–922. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Sun, H.G.; Nie, S.Q.; Packman, A.I.; Zhang, Y.; Chen, D.; Lu, C.P.; Zheng, C.M. Application of Hausdorff fractal derivative to the determination of the vertical sediment concentration distribution. Int. J. Sediment Res. 2023, 38, 12–23. [Google Scholar] [CrossRef]
- Rouse, H. Modern Conceptions of the Mechanics of Turbulence. Trans. Am. Soc. Civ. Eng. 1937, 102, 463–505. [Google Scholar] [CrossRef]
- Rijn, L. Sediment Transport, Part II: Suspended Load Transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Qian, N. Experiment study of two-phase turbulent flow with hyper concentration of coarse particles. Chin. Sci. 1984, 8, 766–773. (In Chinese) [Google Scholar]
- Umeyaina, M. Vertical Distribution of Suspended Sediment in Uniform Open-Channel Flow. J. Hydraul. Eng. 1992, 118, 936–941. [Google Scholar] [CrossRef]
- Cao, Z.X. Turbulent bursting-based sediment entrainment function. J. Hydraul. Eng. 1997, 123, 233–236. [Google Scholar] [CrossRef]
- Fu, X.; Wang, G.; Shao, X. Vertical Dispersion of Fine and Coarse Sediments in Turbulent Open-Channel Flows. J. Hydraul. Eng. 2005, 131, 877–888. [Google Scholar] [CrossRef]
- Fu, X.D.; Wang, G.Q. Analysis on the factors affecting the vertical concentration distribution of fine sediment. J. Hydrodyn. 2004, 19, 231–239. (In Chinese) [Google Scholar]
- Zhong, D.; Wang, G.; Sun, Q. Transport Equation for Suspended Sediment Based on Two-Fluid Model of Solid/Liquid Two-Phase Flows. J. Hydraul. Eng. 2011, 137, 530–542. [Google Scholar] [CrossRef]
- Dou, G.R. Suspended sediment movementand calculation of erosion and deposition in tidal flow. J. Hydraul. Eng. 1963, 4, 13–24. (In Chinese) [Google Scholar]
- Han, Q.W.; Chen, X.J.; Xue, X.C. On the vertical distribution of sediment concentration in non-equilibrium transportation. Adv. Water Sci. 2010, 21, 512–523. (In Chinese) [Google Scholar]
- Ma, Z.; Guo, Q.; Guan, J.; Le, M. Non-equilibrium concentration profile formulas of suspended sediment and their preliminary applications. Int. J. Sediment Res. 2022, 37, 505–513. [Google Scholar] [CrossRef]
- Chen, D.; Sun, H.G.; Zhang, Y. Fractional dispersion equation for sediment suspension. J. Hydrol. 2013, 491, 13–22. [Google Scholar] [CrossRef]
- Liang, Y.; Dou, Z.; Zhou, Z.; Chen, W. Hausdorff derivative model for characterization of non-fickian mixing in fractal porous media. Fractals 2019, 27, 1950063. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.B.; Yin, M.S.; Sun, H.G.; Wei, W.; Li, S.Y.; Zheng, C.M. Nonlocal-transport models for capturing solute transport in one-dimensional sand columns: Model review, applicability, limitations, and improvement. Hydrol. Process. 2020, 34, 5104–5122. [Google Scholar] [CrossRef]
- Christov, I.C. Soft hydraulics: From Newtonian to complex fluid flows through compliant conduits. J. Physics. Condens. Matter 2021, 34, 063001. [Google Scholar] [CrossRef]
- Al-Raeei, M. Morse potential specific bond volume: A simple formula with applications to dimers and soft–hard slab slider. J. Phys. Condens. Matter 2022, 34, 284001. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Rame, E.; Walker, L.M.; Garoff, S. Dynamic wetting with viscous newtonian and non-newtonian fluids. J. Phys. Condens. Matter 2009, 21, 464126. [Google Scholar] [CrossRef]
- Nie, S.; Sun, H.G.; Zhang, Y.; Zhou, L.; Chen, D. A fractal derivative model to quantify bed-load transport along a heterogeneous sand bed. Environ. Fluid Mech. 2020, 20, 1603–1616. [Google Scholar] [CrossRef]
- Nie, S.; Sun, H.; Liu, X.; Ze, W.; Xie, M. Fractal derivative model for the transport of the suspended sediment in unsteady flows. Therm. Sci. 2018, 22 (Suppl. S1), 109–115. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Sun, H.G.; Zhang, Y.; Chen, D.; Wen, C.; Chen, L.; Sydney, S. Vertical Distribution of Suspended Sediment under Steady Flow: Existing Theories and Fractional Derivative Model. Discret. Dyn. Nat. Soc. 2017, 2017, 5481531. [Google Scholar] [CrossRef] [Green Version]
- Meirong, Z.; Junqiang, X.; Shanshan, D.; Yu, M. Longitudinal variation of channel evolution along the middle Yangtze River after the operation of the Three Gorges Project. J. Lake Sci. 2023, 35, 642–649. [Google Scholar] [CrossRef]
- Bureau of Hydrology, Changjiang Water Resources Commission. Analysis on Characteristics of Flow and Sediment Characteristics, Reservoir Sedimentation and Downstream Channel of the Three Gorges Reservoir in 2018; Wuhan Bureau of Hydrology, Changjiang Water Resources Commission: Wuhan, China, 2019. (In Chinese)
- Ren, S.; Zhang, B.; Wang, W.; Yuan, Y.; Guo, C. Sedimentation and its response to management strategies of the Three Gorges Reservoir, Yangtze River, China. Catena 2021, 199, 105096. [Google Scholar] [CrossRef]
- He, L.; Chen, D.; Zhang, S.; Liu, M.; Duan, G. Evaluating Regime Change of Sediment Transport in the Jingjiang River Reach, Yangtze River, China. Water 2018, 10, 329. Available online: https://www.mdpi.com/2073-4441/10/3/329 (accessed on 15 March 2018). [CrossRef] [Green Version]
- He, L.; Chen, D.; Duan, G.L.; Peng, Y.M. Study on vertical distribution of suspended sediment concentration in the Jingjiang reach downstream the Three Gorges Dam. J. Sediment Res. 2020, 45, 27–32. (In Chinese) [Google Scholar]
- Chen, W. Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 2006, 28, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Yao, S.; Shan, M.; Guo, C. Case Study: Influence of Three Gorges Reservoir Impoundment on Hydrological Regime of the Acipenser sinensis Spawning Ground, Yangtze River, China. Front. Ecol. Evol. 2021, 9, 624447. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, D.; Chen, L.; Chen, X.; He, L. Using sediment rating parameters to evaluate the changes in sediment transport regimes in the middle yellow river basin, china. Hydrol. Process. 2019, 33, 2481–2497. [Google Scholar] [CrossRef]
Station | Before TGR Activation | After TGD Activation | Data Details |
---|---|---|---|
ZC | 2000–2001 | 2004–2021 | 3–15 vertical profiles per gauge; measured 1–18 times per year |
SS | 1981–2002 | ||
JL | 1982–2002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Chen, D.; Sun, H.-G.; Zhang, F. Vertical Distribution of Suspended Sediment Concentration in the Unsaturated Jingjiang Reach, Yangtze River, China. Fractal Fract. 2023, 7, 456. https://doi.org/10.3390/fractalfract7060456
Liu M, Chen D, Sun H-G, Zhang F. Vertical Distribution of Suspended Sediment Concentration in the Unsaturated Jingjiang Reach, Yangtze River, China. Fractal and Fractional. 2023; 7(6):456. https://doi.org/10.3390/fractalfract7060456
Chicago/Turabian StyleLiu, Meng, Dong Chen, Hong-Guang Sun, and Feng Zhang. 2023. "Vertical Distribution of Suspended Sediment Concentration in the Unsaturated Jingjiang Reach, Yangtze River, China" Fractal and Fractional 7, no. 6: 456. https://doi.org/10.3390/fractalfract7060456
APA StyleLiu, M., Chen, D., Sun, H. -G., & Zhang, F. (2023). Vertical Distribution of Suspended Sediment Concentration in the Unsaturated Jingjiang Reach, Yangtze River, China. Fractal and Fractional, 7(6), 456. https://doi.org/10.3390/fractalfract7060456