Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation
Abstract
1. Introduction
2. Differential Subordination Results
3. Differential Superordination Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frenkel, E.; Mukhin, E. Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 2001, 216, 23–57. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 2007, 13, 389–405. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Simeonov, P. q-difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef]
- Zagorodnyuk, S.M. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. Constr. Math. Anal. 2020, 3, 75–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Exton, H. q-Hypergeometric Functions and Applications; Hastead Press: New York, NY, USA, 1983. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ernst, T. A History of q-Calculus and a New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Berlin/Helidelberg, Germany, 2012. [Google Scholar]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Ahuja, O.P.; Çetinkaya, A. Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory. AIP Conf. Proc. 2019, 2095, 020001. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
- Challab, K.A.; Darus, M.; Ghanim, F. On subclass of meromorphically univalent functions defined by a linear operator associated with λ-generalized Hurwitz–Lerch zeta function and q-hypergeometric function. Ital. J. Pure Appl. Math. 2018, 39, 410–423. [Google Scholar]
- Challab, K.A.; Darus, M.; Ghanim, F. On q-hypergeometric function. Far East J. Math. Sci. 2017, 101, 2095–2109. [Google Scholar] [CrossRef]
- Challab, K.A.; Darus, M.; Ghanim, F. On meromorphic parabolic starlike functions involving the q-hypergeometric function. AIP Conf. Proc. 2018, 1974, 030003. [Google Scholar]
- Srivastava, H.M.; Arjika, S. A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics 2021, 9, 1161. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 279, 1–14. [Google Scholar] [CrossRef]
- Raza, M.; Srivastava, H.M.; Arif, M. Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 2021, 55, 53–71. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Results on Univalent Functions Defined by q-Analogues of Sălăgean and Ruscheweh Operators. Symmetry 2022, 14, 1725. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Subordination Results on the q-Analogue of the Sălăgean Differential Operator. Symmetry 2022, 14, 1744. [Google Scholar] [CrossRef]
- Hadid, S.B.; Ibrahim, R.W.; Momani, S. Multivalent Functions and Differential Operator Extended by the Quantum Calculus. Fractal Fract. 2022, 6, 354. [Google Scholar] [CrossRef]
- Dileep, L.; Divya Rashmi, S.V. Certain subclasses of analytic function by Sălăgean q-differential operator. TWMS J. Appl. Eng. Math. 2023, 13, 46–52. [Google Scholar]
- El-Deeb, S.M. Quasi-Hadamard product of certain classes with respect to symmetric points connected with q-Sălăgean operator. Montes Taurus J. Pure Appl. Math. 2022, 4, 77–84. [Google Scholar]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Srivastava, H.M.; Hadi, S.H.; Darus, M. Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2023, 117, 50. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Aldawish, I.; Aouf, M.; Seoudy, T.; Frasin, B. Neighborhood properties for certain p-valent analytic functions associated with q-p-valent Bernardi integral operator of complex order. J. Appl. Math. Inform. 2022, 40, 753–764. [Google Scholar]
- Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the Faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
- Shah, S.A.; Noor, K.I. Study on q-analogue of certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlă, L.-I. New Applications of Gegenbauer Polynomials on a New Family of Bi-Bazilevič Functions Governed by the q-Srivastava-Attiya Operator. Mathematics 2022, 10, 1309. [Google Scholar] [CrossRef]
- Shah, S.A.; Cotîrlă, L.-I.; Cătaş, A.; Dubău, C.; Cheregi, G. A Study of Spiral-Like Harmonic Functions Associated with Quantum Calculus. J. Funct. Spaces 2022, 2022, 5495011. [Google Scholar] [CrossRef]
- Shah, S.A.; Ali, E.E.; Cătaş, A.; Albalahi, A.M. On fuzzy differential subordination associated with q-difference operator. AIMS Math. 2023, 8, 6642–6650. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function. Demonstr. Math. 2023, 56, 20220186. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Differential sandwich theorems involving Riemann-Liouville fractional integral of q-hypergeometric function. AIMS Math. 2023, 8, 4930–4943. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A.; Cătaş, A. Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation. Fractal Fract. 2023, 7, 199. https://doi.org/10.3390/fractalfract7020199
Alb Lupaş A, Cătaş A. Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation. Fractal and Fractional. 2023; 7(2):199. https://doi.org/10.3390/fractalfract7020199
Chicago/Turabian StyleAlb Lupaş, Alina, and Adriana Cătaş. 2023. "Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation" Fractal and Fractional 7, no. 2: 199. https://doi.org/10.3390/fractalfract7020199
APA StyleAlb Lupaş, A., & Cătaş, A. (2023). Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation. Fractal and Fractional, 7(2), 199. https://doi.org/10.3390/fractalfract7020199