Next Article in Journal
Dynamics and Stability of a Fractional-Order Tumor–Immune Interaction Model with B-D Functional Response and Immunotherapy
Next Article in Special Issue
Jackson Differential Operator Associated with Generalized Mittag–Leffler Function
Previous Article in Journal
Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions
Previous Article in Special Issue
Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation

by
Alina Alb Lupaş
*,† and
Adriana Cătaş
Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Fractal Fract. 2023, 7(2), 199; https://doi.org/10.3390/fractalfract7020199
Submission received: 10 January 2023 / Revised: 2 February 2023 / Accepted: 15 February 2023 / Published: 17 February 2023
(This article belongs to the Special Issue Fractional Operators and Their Applications)

Abstract

:
The results obtained by the authors in the present paper refer to quantum calculus applications regarding the theories of differential subordination and superordination. These results are established by means of an operator defined as the q-analogue of the multiplier transformation. Interesting differential subordination and superordination results are derived by the authors involving the functions belonging to a new class of normalized analytic functions in the open unit disc U, which is defined and investigated here by using this q-operator.

1. Introduction

Quantum calculus is widely engaged in mathematical fields due to its numerous uses related to combinatorics [1], associated with orthogonal polynomials [2,3,4], regarding number theory [5], or involving basic hypergeometric functions [6]. Certain aspects concerning fundamentals of q-calculus and how it was embedded in mathematical theories can be seen in [7,8,9]. In 1911, Jackson introduced the notions of q-derivative [10] and q-integral [11].
The first applications of q-calculus in geometric function theory are seen in [12], where the authors define the class of q-starlike functions. Numerous applications of quantum calculus in geometric function theory have emerged in the recent years after the general context for such research was established by Srivastava in a book chapter published in 1989 [13]. Certain aspects regarding the use of quantum calculus in geometric function theory are highlighted in a recent paper [14], and other developments are emphasized in the review done by Srivastava in 2020 [15] alongside the multitude of q-operators derived by involving well-known differential and integral operators specific to geometric function theory.
New operators were defined using q-hypergeometric functions [16,17], subclasses of meromorphic functions were introduced and studied using q-hypergeometric functions [18,19] and q-hypergeometric polynomials were defined in [20]. Many investigations concerned the q-analogue of Ruscheweyh differential operators defined in [21] and the q-analogue of Sălăgean differential operators introduced in [22]. For example, differential subordinations are investigated involving a certain q-Ruscheweyh type derivative operator in [23], a q-Ruscheweyh derivative operator is used for the definition and coefficient estimates investigation of a new class of analytic functions in [24], and classes of analytic univalent functions are introduced and investigated in [25] using both Ruscheweyh and Sălăgean q-analogue operators. Subordination results involving the q-analogue of the Sălăgean differential operator are obtained in [26]. and a generalization of the Sălăgean q-differential operator is involved in the study of certain differential subordinations in [27]. New subclasses of univalent functions are introduced in [28] using Sălăgean q-differential operators, and a quasi-Hadamard product is associated with the study regarding certain starlike and convex functions with respect to symmetric points involving q-Sălăgean operators in [29]. A q-Bernardi integral operator is introduced in [30]. Recent results obtained by applying it to starlike and convex functions can be seen in [31,32] and for certain subclasses of p-valent functions in [33]. A q-Bernardi integral operator is introduced and studied regarding m-fold symmetric functions in [34].
The Srivastava–Attiya operator and the multiplier transformation are adapted to a quantum calculus approach in [35]. Further applications of the q-Srivastava–Attiya operator involving holomorphic and bi-univalent functions are proved in [36,37]. In recent investigations, the q-analogue of the multiplier transformation was used to define and study new subclasses of harmonic univalent functions [38] and to obtain fuzzy differential subordinations [39].
The motivation for introducing the new results contained in this paper resides from the nice results recently obtained by incorporating quantum calculus aspects into geometric function theory as listed above. Reading about the applications of the q-analogue of the multiplier transformation regarding the definition of new subclasses of univalent functions [38] and connected to the theory of fuzzy differential subordination [39], and considering the recent results involving another quantum calculus operator and the classical theories of differential subordination and superordination [40,41], we were inspired to further investigate the q-analogue of the multiplier transformation connected to the idea of introducing and studying new subclasses of univalent functions. For the investigation presented in this paper, the q-analogue of the multiplier transformation is applied for defining a new convex subclass of normalized analytic functions in the open unit disc U, which is further investigated using the methods of differential subordination and superordination theories.
The notions and preliminary known results used in the research are first introduced.
The investigation is set in the unit disc of the complex plane,  U = { z C : | z | < 1 }  and involves the class of holomorphic functions in the unit disc  H ( U ) .
Particular subclasses of  H ( U )  involved are:
A p , n = { f ( z ) = z p + j = p + n a j z j H ( U ) } ,
with  A n = A 1 , n A = A 1 = A 1 , 1  and
H [ a , n ] = { f ( z ) = a + a n z n + a n + 1 z n + 1 + H ( U ) } ,
where  n , p N a C .
The differential subordination’s theory established by Mocanu and Miller [42] concerns the following definitions:
The analytic function  ϕ  is subordinate to the analytic function  γ  in U, denoted as  ϕ γ , when there exists an analytic function  ω  in U, such that  ω ( 0 ) = 0 | ω ( z ) | < 1 z U  and  ϕ ( z ) = γ ( ω ( z ) ) z U . For univalent function  γ , we have  ϕ γ  if and only if  ϕ ( 0 ) = γ ( 0 )  and  ϕ ( U ) γ ( U ) .
Let  ψ : C 3 × U C  and h be a univalent function in U. A solution of the differential subordination is an analytic function p in U that verifies the differential subordination
ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) h ( z ) , z U .
A dominant of the solutions of the differential subordination is the univalent function  π  such that  p π  for all p satisfying (1). The best dominant of (1) is a dominant  π ˜  with the property  π ˜ π  for all dominants  π  of (1).
The dual theory of differential superordination introduced by Mocanu and Miller in 2003 [43] is characterized by the following definitions:
As a dual notion, the analytic function  ϕ  is superordinate to the analytic function  γ , denoted as  γ ϕ , when there exists an analytic function  ω  in U, such that  ω ( 0 ) = 0 | ω ( z ) | < 1 z U  and  γ ( z ) = ϕ ( ω ( z ) ) , z U . For univalent function  ϕ  we have  γ ϕ  if and only if  ϕ ( 0 ) = γ ( 0 )  and  γ ( U ) ϕ ( U ) .
Let  ψ : C 2 × U C  and h be an analytic function in U. A solution of the differential superordination is the univalent fnction p such that  ψ p z , z p z ; z  is univalent in U and verifies the differential superordination
h ( z ) ψ ( p ( z ) , z p ( z ) ; z ) , z U .
A subordinant of the solutions of the differential superordination is the analytic function  π  such that  π p  for all p satisfying (2). The best subordinant of (2) is a univalent subordinant  π ˜  with property  π π ˜  for all subordinants  π  of (2).
Let Q represent the set of analytic and injective functions on  U ¯ \ E f  with property  f t 0  for  t U \ E f  and  E f = { t U : lim z t f z = } Q a  is the subclass of Q with the property  f 0 = a .
The following lemmas are useful for the proofs of the new results contained in the next sections.
Lemma 1
(Mocanu and Miller [42]). Let a convex function g in U and the function
h ( z ) = n α z g ( z ) + g ( z ) ,
with  z U ,  n a positive integer, and  α > 0 .
When the function
g ( 0 ) + p n z n + p n + 1 z n + 1 + = p z , z U
is holomorphic in U and the differential subordination
α z p ( z ) + p ( z ) h ( z ) , z U ,
holds, then the differential subordination
p ( z ) g ( z )
holds as well, and the result is sharp.
Lemma 2
(Ruscheweyh and Hallenbeck ([44], Th. 3.1.6, p. 71)). Let a convex function h such that  h ( 0 ) = a , and  α C  with  R e α 0 . When  p H [ a , n ]  and the differential subordination
z p ( z ) γ + p ( z ) h ( z ) , z U ,
holds, then the differential subordinations
p ( z ) g ( z ) h ( z ) , z U ,
hold for
g ( z ) = α n z α n 0 z h ( t ) t α n 1 d t , z U .
Lemma 3
(Mocanu and Miller ([43], Th. 3.1.6, p. 71)). Let a convex function h such that  h ( 0 ) = a , and  α C  with  R e α 0 . When  p Q H [ a , n ] ,   z p ( z ) α + p ( z )  is a univalent function in U and the differential superordination
h ( z ) z p ( z ) α + p ( z ) , z U ,
holds, then the differential superordination
g ( z ) p ( z ) , z U ,
holds as well, for the convex function  g ( z ) = α n z α n 0 z h ( t ) t α n 1 d t ,   z U  the best subordinant.
Lemma 4
(Mocanu and Miller [43]). Consider a convex function g in U and the function
h ( z ) = z g ( z ) α + g ( z ) , z U ,
with  α C , R e α 0 . If  p Q H a , n z p ( z ) α + p ( z )  is a univalent function in U and the differential superordination
z g ( z ) α + g ( z ) z p z α + p ( z ) , z U ,
holds, then the differential superordination
g ( z ) p ( z ) , z U ,
holds as well, for  g ( z ) = α n z α n 0 z h ( t ) t α n 1 d t , z U  the best subordinant.
We note the notions and notations of q-calculus.
For  0 < q < 1 n N , it is denoted that
n q = 1 q n 1 q ,
and
n q ! = k = 1 n k q , n N , 1 , n = 0 .
The q-derivative operator  D q  is defined for a function  f A  by ([45]):
D q f z = f z f q z 1 q z , z 0 , f 0 , z = 0 .
It can be observed that
lim q 1 D q f z = lim q 1 f z f q z 1 q z = f z
for f a differentiable function.
For  f z = z k ,   D q f z = D q z k = 1 q k 1 q z k 1 = k q z k 1 .
We now show the definition of the q-analogue of the multiplier transformation:
Definition 1
([35]). Denote by  I q m , l  the q-analogue of multiplier transformation
I q m , l f z : = z + k = 2 k + l q 1 + l q m a k z k ,
with  l > 1 q 0 , 1 , m a real number, and  f ( z ) = z + k = 2 a k z k A z U .
Using the properties of q-calculus, we obtain
z D q I q m , l f z = 1 + l q q l I q m + 1 , l f z l q q l I q m , l f z .
Using the q-analogue of the multiplier transformation  I q m , l  given in Definition 1, a new subclass of normalized analytic functions in the open unit disc U is introduced in Section 2 of this paper. It is proved that this new class is convex and, using this property, subordination results are investigated in the theorems of Section 2 involving functions from the newly defined class, operator  I q m , l , and Lemmas 1 and 2. In Section 3, differential superordinations involving the operator  I q m , l  are considered for which the best subordinants are also found. Lemmas 3 and 4 are necessary for establishing the new results.

2. Differential Subordination Results

The new class of normalized analytic functions in the open unit disc U is defined using the q-analogue of the multiplier transformation  I q m , l  given in Definition 1.
Definition 2.
Let  α 0 , 1 . The class  S m , l q α  consists of the functions  f A  with property
R e I q m , l f z > α , z U .
The first result concerning the class  S m , l q α  establishes its convexity.
Theorem 1.
S m , l q α  is a convex set.
Proof. 
Consider the functions
f j z = z + k = 2 a j k z k , z U , j = 1 , 2 ,
belonging to the class  S m , l q α .  It is enough to prove that the function
f z = λ 1 f 1 z + λ 2 f 2 z
belongs to the class  S m δ , α ,  with  λ 1  and  λ 2  positive real numbers such that  λ 1 + λ 2 = 1 .
The function f has the following form:
f z = z + k = 2 λ 1 a 1 k + λ 2 a 2 k z k , z U ,
and
I q m , l f z = z + k = 2 k + l q 1 + l q m λ 1 a 1 k + λ 2 a 2 k z k , z U .
Differentiating relation (4), we obtain
I q m , l f z = 1 + k = 2 k + l q 1 + l q m λ 1 a 1 k + λ 2 a 2 k k z k 1 , z U .
Hence
R e I q m , l f z = 1 + R e λ 1 k = 2 k k + l q 1 + l q m a 1 k z k 1 + R e λ 2 k = 2 k k + l q 1 + l q m a 2 k z k 1 .
Taking into account that  f 1 , f 2 S m , l q α , we can write
R e λ j k = 2 k k + l q 1 + l q m a j k z k 1 > λ k α 1 , j = 1 , 2 .
Using relation (6), we get from (5):
R e I q m , l f z > 1 + λ 1 α 1 + λ 2 α 1 = α , z U ,
which proved that the set  S m , l q α  is convex. □
We next investigate a series of differential subordinations involving the convex functions of the class  S m , l q α  and the q-analogue of the multiplier transformation  I q m , l .
Theorem 2.
Considering g a convex function, we define the function
h z = z g z a + 2 + g z , a > 0 , z U .
For  f S m , l q α , consider
F z = a + 2 z a + 1 0 z t a f t d t , z U ,
then the differential subordination
I q m , l f z h z , z U ,
implies the sharp differential subordination
I q m , l F z g z , z U .
Proof. 
Relation (8) can be written as follows:
z a + 1 F z = a + 2 0 z t a f t d t ,
and differentiating it, we have
z F z + a + 1 F z = a + 2 f z
and
z I q m , l F z + a + 1 I q m , l F z = a + 2 I q m , l f z , z U .
Differentiating the last relation, we get
z I q m , l F z a + 2 + I q m , l F z = I q m , l f z , z U ,
and subordination (9) can be written in the form
z I q m , l F z a + 2 + I q m , l F z z g z a + 2 + g z .
Denoting
p z = I q m , l F z H 1 , 1 ,
differential subordination (14) has the following form:
z p z a + 2 + p z z g z a + 2 + g z , z U .
Applying Lemma 1, we get
p z g z ,
that means
I q m , l F z g z , z U
for g the best dominant. □
Theorem 3.
Denoting
I a f z = a + 2 z a + 1 0 z t a f t d t , a > 0 ,
then
I a S m , l q α S m , l q α ,
where
α = 2 α 1 + a + 2 2 2 α 0 1 t a + 1 t + 1 d t .
Proof. 
We use the hypothesis of Theorem 3 for the convex function  h z = 1 + 2 α 1 z 1 + z  and, following the same steps as the proof of Theorem 2, the differential subordination
z p z a + 2 + p z h z ,
with p defined by relation (15).
Applying Lemma 2, we get the differential subordinations
p z g z h z ,
equivalently with
I q m , l F z g z h z ,
where
g z = a + 2 z a + 2 0 z t a + 1 1 + 2 α 1 t 1 + t d t =
2 α 1 + a + 2 2 2 α z a + 2 0 z t a + 1 t + 1 d t .
Taking into account that g is a convex function with  g U  symmetric to the real axis, we obtain
R e I q m , l F z min z = 1 R e g z = R e g 1 = α =
2 α 1 + a + 2 2 2 α 0 1 t a + 1 t + 1 .
Theorem 4.
Considering the convex function g such that  g ( 0 ) = 1 ,  we define the function
h ( z ) = z g ( z ) + g ( z ) , z U .
If  f A  verifies the subordination
I q m , l f z h ( z ) , z U ,
then the sharp differential subordination
I q m , l f z z g ( z ) , z U
holds.
Proof. 
Considering
p ( z ) = I q m , l f ( z ) z = z + k = 2 k + l q 1 + l q m a k z k z = 1 + p 1 z + p 2 z 2 + . . . , z U ,
evidently  p H [ 1 , 1 ] , so we can write
z p ( z ) = I q m , l f ( z ) , z U ,
and differentiating it, we get
I q m , l f ( z ) = z p ( z ) + p ( z ) , z U .
Subordination (19) take the form
z p ( z ) + p ( z ) h ( z ) = z g ( z ) + g ( z ) , z U ,
and applying Lemma 1, we get
p ( z ) g ( z ) , z U ,
which means
I q m , l f ( z ) z g ( z ) , z U .
Theorem 5.
Considering the convex function h with  h 0 = 1 , for  f A  that verifies the subordination
I q m , l f z h ( z ) , z U ,
we get the differential subordination
I q m , l f z z g ( z ) , z U ,
for the convex function  g ( z ) = 1 z 0 z h ( t ) d t ,  which is the best dominant.
Proof. 
Denote
p ( z ) = I q m , l f ( z ) z = 1 + k = 2 k + l q 1 + l q m a k z k 1 H [ 1 , 1 ] , z U .
Differentiating it the relation, we get
I q m , l f ( z ) = z p ( z ) + p ( z ) , z U
and differential subordination (20) has the following form:
z p ( z ) + p ( z ) h ( z ) , z U .
After applying Lemma 2, we get
p ( z ) g ( z ) = 1 z 0 z h ( t ) d t , z U ,
written as
I q m , l f ( z ) z g ( z ) = 1 z 0 z h ( t ) d t , z U
for g the best dominant. □
Theorem 6.
Considering a convex function g such that  g 0 = 1 ,  we define the function  h z = z g z + g z , z U . When  f A  verifies the subordination
z I q m + 1 , l f z I q m , l f z h z , z U ,
then we get the sharp differential subordination
I q m + 1 , l f z I q m , l f z g z , z U .
Proof. 
Denote
p ( z ) = I q m + 1 , l f z I q m , l f z = z + k = 2 k + l q 1 + l q m + 1 a k z k z + k = 2 k + l q 1 + l q m a k z k .
Differentiating it, we get  p z = I q m + 1 , l f z I q m , l f z p z I q m , l f z I q m , l f z  written as
z p z + p z = z I q m + 1 , l f z I q m , l f z .
Differential subordination (21) has the following form, for  z U ,
z p ( z ) + p ( z ) h ( z ) = z g ( z ) + g ( z ) ,
and applying Lemma 1, we get the differential subordination, for  z U ,
p ( z ) g ( z ) ,
written as
I q m + 1 , l f z I q m , l f z g ( z ) .

3. Differential Superordination Results

In this section, differential superordinations are investigated concerning the q-analogue of the multiplier transformation  I q m , l  and its derivatives of first and second order. The best subordinant is given for each of the investigated differential superordinations.
Theorem 7.
Considering  f A  and a convex function h in U such that  h 0 = 1 ,  denote  F z = a + 2 z a + 1 0 z t a f t d t z U R e   a > 2 ,  and assume that  I q m , l f z  is a univalent function in U,  I q m , l F z Q H 1 , 1 . If the differential superordination
h z I q m , l f z , z U ,
holds, then we get the differential superordination
g z I q m , l F z , z U ,
with the convex function  g ( z ) = a + 2 z a + 2 0 z h ( t ) t a + 1 d t  the best subordinant.
Proof. 
Using the relation  z a + 1 F z = a + 2 0 z t a f t d t  from Theorem 2 and differentiating it, we can write  z F z + a + 1 F z = a + 2 f z  in the following form:  z I q m , l F z + a + 1 I q m , l F z = a + 2 I q m , l f z , z U ,  which after differentiating it again, has the form
z I q m , l F z a + 2 + I q m , l F z = I q m , l f z , z U .
Using the last relation, superordination (22) can be written
h z z I q m , l F z a + 2 + I q m , l F z .
Define
p z = I q m , l F z , z U ,
and replacing (24) in (23) we have  h z z p z a + 2 + p z z U .  Applying Lemma 3 considering  n = 1  and  α = a + 2 ,  it yields  g z p z ,  equivalently with  g z I q m , l F z z U ,  with the best subordinant  g ( z ) = a + 2 z a + 2 0 z h ( t ) t a + 1 d t  convex function. □
Theorem 8.
Considering a convex function g, we define the function  h z = z g z a + 2 + g z ,  with  R e   a > 2 ,   z U .  For  f A ,  denote  F z = a + 2 z a + 1 0 z t a f t d t z U  and assume that  I q m , l f z  is univalent in U and  I q m , l F z Q H 1 , 1 . When the differential superordination
h z I q m , l f z , z U ,
holds, then we get the differential superordination
g z I q m , l F z , z U ,
for  g ( z ) = a + 2 z a + 2 0 z h ( t ) t a + 1 d t  the best subordinant.
Proof. 
Considering  p z = I q m , l F z ,   z U , following the proof of Theorem 7 we can write the differential superordination (25) in the following form:
h z = z g z a + 2 + g z z p z a + 2 + p z , z U .
Applying Lemma 4 for  α = a + 2  and  n = 1 ,  we obtain the differential superordination  g z p z = I q m , l F z ,   z U ,  having  g ( z ) = a + 2 z a + 2 0 z h ( t ) t a + 1 d t  the best subordinant. □
Theorem 9.
For  f A  denote  F z = a + 2 z a + 1 0 z t a f t d t z U ,  and  h z = 1 + 2 α 1 z 1 + z ,  where  R e   a > 2 α 0 , 1 .  Assume that  I q m , l f z  is univalent in U,  I q m , l F z Q H 1 , 1  and the differential superordination
h z I q m , l f z , z U ,
is satisfied, then the differential superordination
g z I q m , l F z , z U ,
is satisfied for the convex function  g ( z ) = 2 α 1 + a + 2 2 2 α z a + 2 0 z t a + 1 t + 1 d t ,   z U  as the best subordinant.
Proof. 
Denoting  p ( z ) = I q m , l F z , following the proof of Theorem 7, superordination (26) can be written as  h ( z ) = 1 + ( 2 α 1 ) z 1 + z z p z a + 2 + p z ,   z U .
Applying Lemma 3, we get the differential superordination  g ( z ) p ( z ) , with  g ( z ) = a + 2 z a + 2 0 z 1 + ( 2 α 1 ) t 1 + t t a + 1 d t = 2 α 1 + a + 2 2 2 α z a + 2 0 z t a + 1 t + 1 d t I q m , l F z ,   z U ,  and g is the best subordinant and it is convex. □
Theorem 10.
For  f A , consider a convex function h such that  h ( 0 ) = 1  and assume that  I q m , l f ( z )  is univalent and  I q m , l f ( z ) z Q H 1 , 1 . When the superordination
h ( z ) I q m , l f ( z ) , z U ,
holds, then the following differential superordination
g ( z ) I q m , l f ( z ) z , z U ,
is satisfied, for the convex function  g ( z ) = 1 z 0 z h ( t ) d t  the best subordinant.
Proof. 
Denoting  p ( z ) = I q m , l f ( z ) z = z + k = 2 k + l q 1 + l q m a k z k z H [ 1 , 1 ] , z U ,  we can write  I q m , l f ( z ) = z p ( z ) ,  and differentiating it, we have  I q m , l f ( z ) = z p ( z ) + p ( z ) ,   z U .
With this notation, differential superordination (27) becomes  h ( z ) z p ( z ) + p ( z ) ,   z U ,  and applying Lemma 3, we get  g ( z ) p ( z ) = I q m , l f ( z ) z ,   z U ,  for  g ( z ) = 1 z 0 z h ( t ) d t  the best subordinant and convex. □
Theorem 11.
Considering a convex function g in U we define the function h by  h z = z g z + g z .  Assume  I q m , l f ( z )  is univalent,  I q m , l f ( z ) z Q H 1 , 1  for  f A  and the superordination
h ( z ) = z g z + g z I q m , l f ( z ) , z U ,
is satisfied, then the differential superordination
g ( z ) I q m , l f ( z ) z , z U ,
is satisfied for  g ( z ) = 1 z 0 z h ( t ) d t  the best subordinant.
Proof. 
Taking account the proof of Theorem 10 for  p ( z ) = I q m , l f ( z ) z , the superordination (28) can be written in the following form:  z g ( z ) + g ( z ) z p z + p ( z ) ,   z U .
Applying Lemma 4, we get the differential superordination  g ( z ) p ( z ) ,  equivalently with  g ( z ) = 1 z 0 z h ( t ) d t I q m , l f ( z ) z z U ,  for g the best subordinant. □
Theorem 12.
Let  h ( z ) = 1 + ( 2 α 1 ) z 1 + z  with  0 α < 1 z U .  For  f A  suppose that  I q m , l f ( z )  is univalent and  I q m , l f ( z ) z Q H 1 , 1 . If the differential superordination
h ( z ) I q m , l f ( z ) , z U ,
holds, then we get the following differential superordination
g ( z ) I q m , l f ( z ) z , z U ,
where the best subordinant is the convex function  g ( z ) = 2 α 1 + 2 ( 1 α ) ln ( 1 + z ) z ,   z U .
Proof. 
Following the proof of Theorem 10 for  p ( z ) = I q m , l f ( z ) z , superordination (29) takes the form  h ( z ) = 1 + ( 2 α 1 ) z 1 + z z p ( z ) + p ( z ) ,   z U .
Applying Lemma 3, we get the following differential superordination  g ( z ) p ( z ) , which can be written as  g ( z ) = 1 z 0 z 1 + ( 2 α 1 ) t 1 + t d t = 2 α 1 + 2 ( 1 α ) z ln ( z + 1 ) I q m , l f ( z ) z ,   z U .  The function g is the best subordinant and it is convex. □
Theorem 13.
Considering a convex function h such that  h ( 0 ) = 1 , for  f A , suppose that  z I q m + 1 , l f ( z ) I q m , l f z  is univalent and  I q m + 1 , l f ( z ) I q m , l f z Q H 1 , 1 . If the differential superordination
h ( z ) z I q m + 1 , l f ( z ) I q m , l f z , z U ,
holds, then we get the following differential superordination:
g ( z ) I q m + 1 , l f ( z ) I q m , l f z , z U ,
with the best subordinant is the convex function  g ( z ) = 1 z 0 z h ( t ) d t .
Proof. 
Let  p ( z ) = I q m + 1 , l f ( z ) I q m , l f z ,  after differentiating it, we can write  p z = I q m + 1 , l f z I q m , l f z p z I q m , l f z I q m , l f z  in the form  z p z + p z = z I q m + 1 , l f ( z ) I q m , l f z .
Differential superordination (30) for  z U  becomes  h ( z ) z p ( z ) + p ( z ) .
Applying Lemma 3, we obtain the following differential superordination:  g ( z ) p ( z ) = I q m + 1 , l f ( z ) I q m , l f z ,   z U ,  for the best subordinant  g ( z ) = 1 z 0 z h ( t ) d t  convex. □
Theorem 14.
Consider a convex function g and the function h defined by  h z = z g z + g z .  For  f A , assume that  z I q m + 1 , l f ( z ) I q m , l f z  is univalent and  I q m + 1 , l f ( z ) I q m , l f z Q H 1 , 1 . If the differential superordination
h ( z ) = z g z + g z z I q m + 1 , l f ( z ) I q m , l f z , z U ,
holds, then we get the differential superordination
g ( z ) I q m + 1 , l f ( z ) I q m , l f z , z U ,
and the best subordinant is  g ( z ) = 1 z 0 z h ( t ) d t .
Proof. 
Following the proof of Theorem 13 for  p ( z ) = I q m + 1 , l f ( z ) I q m , l f z , superordination (31) has the form  h z = z g ( z ) + g ( z ) z p ( z ) + p ( z ) ,   z U .
Applying Lemma 4, it yields  g ( z ) p ( z ) ,  equivalently with  g ( z ) = 1 z 0 z h ( t ) d t I q m + 1 , l f ( z ) I q m , l f z ,   z U ,  and the best subordinant is g. □
Theorem 15.
Consider  h ( z ) = 1 + ( 2 α 1 ) z 1 + z , with  0 α < 1 . For  f A , assume that  z I q m + 1 , l f ( z ) I q m , l f z  is univalent and  I q m + 1 , l f ( z ) I q m , l f z Q H 1 , 1 . If the differential superordination
h ( z ) z I q m + 1 , l f ( z ) I q m , l f z , z U ,
holds, then the differential superordination
g ( z ) I q m + 1 , l f ( z ) I q m , l f z , z U ,
holds, and the best subordinant is the convex function  g ( z ) = 2 α 1 + 2 ( 1 α ) ln ( 1 + z ) z ,   z U .
Proof. 
Using the notation  p ( z ) = I q m + 1 , l f ( z ) I q m , l f z , differential superordination (32) can be written  h ( z ) = 1 + ( 2 α 1 ) z 1 + z z p ( z ) + p ( z ) ,   z U .
Applying Lemma 3, we get the differential superordination  g ( z ) p ( z ) , equivalently with  g ( z ) = 1 z 0 z 1 + ( 2 α 1 ) t 1 + t d t = 2 α 1 + 2 ( 1 α ) 1 z ln ( z + 1 ) I q m + 1 , l f ( z ) I q m , l f z ,   z U .
The best subordinant is the convex function g. □

4. Conclusions

The new results proved in this paper are related to a new class of analytic normalized functions in U S m , l q α , given in Definition 2, using the q-analogue of the multiplier transformation  I q m , l  shown in Definition 1. In Section 2 of the paper, the class is introduced and its convexity property is proved. Using this attribute of the functions belonging to class  S m , l q α , sharp differential subordinations are next investigated in five theorems. In Theorem 2, the best dominant for the differential subordination is also provided; in Theorem 3, a certain inclusion relation is proved for the class  S m , l q α . In Section 3 of the paper, differential superordinations are established in the nine theorems involving the q-analogue of the multiplier transformation  I q m , l , its first derivative  I q m , l f z , second derivative  I q m , l f z , and the expression  z I q m + 1 , l f z I q m , l f z  and its derivative.
For future studies, the subordination and superordination results obtained here can inspire investigations where other q-operators are used instead of q-analogue of the multiplier transformation  I q m , l f z . In addition, since the best dominant of the differential subordination in Theorem 2 is given, and the best subordinants are provided for the differential superordinations studied in Section 3, conditions for univalence of the operator  I q m , l f z  investigated here could be further obtained. Other classes of univalent functions could be defined using the q-analogue of the multiplier transformation  I q m , l f z  and different subordination relations. Coefficient estimates could also be studied for the class  S m , l q α .

Author Contributions

Conceptualization, A.A.L. and A.C.; methodology, A.C.; software, A.A.L.; validation, A.A.L. and A.C.; formal analysis, A.A.L. and A.C.; investigation, A.A.L.; resources, A.C.; data curation, A.C.; writing—original draft preparation, A.A.L.; writing—review and editing, A.A.L. and A.C.; visualization, A.A.L.; supervision, A.C.; project administration, A.A.L.; funding acquisition, A.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Frenkel, E.; Mukhin, E. Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 2001, 216, 23–57. [Google Scholar] [CrossRef] [Green Version]
  2. Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 2007, 13, 389–405. [Google Scholar] [CrossRef] [Green Version]
  3. Ismail, M.E.H.; Simeonov, P. q-difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef] [Green Version]
  4. Zagorodnyuk, S.M. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. Constr. Math. Anal. 2020, 3, 75–84. [Google Scholar] [CrossRef] [Green Version]
  5. Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
  6. Exton, H. q-Hypergeometric Functions and Applications; Hastead Press: New York, NY, USA, 1983. [Google Scholar]
  7. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
  8. Ernst, T. A History of q-Calculus and a New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
  9. Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Berlin/Helidelberg, Germany, 2012. [Google Scholar]
  10. Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  11. Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  12. Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
  13. Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
  14. Ahuja, O.P.; Çetinkaya, A. Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory. AIP Conf. Proc. 2019, 2095, 020001. [Google Scholar]
  15. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
  16. Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
  17. Challab, K.A.; Darus, M.; Ghanim, F. On subclass of meromorphically univalent functions defined by a linear operator associated with λ-generalized Hurwitz–Lerch zeta function and q-hypergeometric function. Ital. J. Pure Appl. Math. 2018, 39, 410–423. [Google Scholar]
  18. Challab, K.A.; Darus, M.; Ghanim, F. On q-hypergeometric function. Far East J. Math. Sci. 2017, 101, 2095–2109. [Google Scholar] [CrossRef]
  19. Challab, K.A.; Darus, M.; Ghanim, F. On meromorphic parabolic starlike functions involving the q-hypergeometric function. AIP Conf. Proc. 2018, 1974, 030003. [Google Scholar]
  20. Srivastava, H.M.; Arjika, S. A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics 2021, 9, 1161. [Google Scholar] [CrossRef]
  21. Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
  22. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
  23. Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 279, 1–14. [Google Scholar] [CrossRef]
  24. Raza, M.; Srivastava, H.M.; Arif, M. Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 2021, 55, 53–71. [Google Scholar] [CrossRef]
  25. Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Results on Univalent Functions Defined by q-Analogues of Sălăgean and Ruscheweh Operators. Symmetry 2022, 14, 1725. [Google Scholar] [CrossRef]
  26. Alb Lupaş, A. Subordination Results on the q-Analogue of the Sălăgean Differential Operator. Symmetry 2022, 14, 1744. [Google Scholar] [CrossRef]
  27. Hadid, S.B.; Ibrahim, R.W.; Momani, S. Multivalent Functions and Differential Operator Extended by the Quantum Calculus. Fractal Fract. 2022, 6, 354. [Google Scholar] [CrossRef]
  28. Dileep, L.; Divya Rashmi, S.V. Certain subclasses of analytic function by Sălăgean q-differential operator. TWMS J. Appl. Eng. Math. 2023, 13, 46–52. [Google Scholar]
  29. El-Deeb, S.M. Quasi-Hadamard product of certain classes with respect to symmetric points connected with q-Sălăgean operator. Montes Taurus J. Pure Appl. Math. 2022, 4, 77–84. [Google Scholar]
  30. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
  31. Srivastava, H.M.; Hadi, S.H.; Darus, M. Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2023, 117, 50. [Google Scholar] [CrossRef]
  32. Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
  33. Aldawish, I.; Aouf, M.; Seoudy, T.; Frasin, B. Neighborhood properties for certain p-valent analytic functions associated with q-p-valent Bernardi integral operator of complex order. J. Appl. Math. Inform. 2022, 40, 753–764. [Google Scholar]
  34. Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the Faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
  35. Shah, S.A.; Noor, K.I. Study on q-analogue of certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
  36. Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
  37. Wanas, A.K.; Cotîrlă, L.-I. New Applications of Gegenbauer Polynomials on a New Family of Bi-Bazilevič Functions Governed by the q-Srivastava-Attiya Operator. Mathematics 2022, 10, 1309. [Google Scholar] [CrossRef]
  38. Shah, S.A.; Cotîrlă, L.-I.; Cătaş, A.; Dubău, C.; Cheregi, G. A Study of Spiral-Like Harmonic Functions Associated with Quantum Calculus. J. Funct. Spaces 2022, 2022, 5495011. [Google Scholar] [CrossRef]
  39. Shah, S.A.; Ali, E.E.; Cătaş, A.; Albalahi, A.M. On fuzzy differential subordination associated with q-difference operator. AIMS Math. 2023, 8, 6642–6650. [Google Scholar] [CrossRef]
  40. Alb Lupaş, A.; Oros, G.I. Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function. Demonstr. Math. 2023, 56, 20220186. [Google Scholar] [CrossRef]
  41. Alb Lupaş, A.; Oros, G.I. Differential sandwich theorems involving Riemann-Liouville fractional integral of q-hypergeometric function. AIMS Math. 2023, 8, 4930–4943. [Google Scholar] [CrossRef]
  42. Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
  43. Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar]
  44. Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
  45. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alb Lupaş, A.; Cătaş, A. Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation. Fractal Fract. 2023, 7, 199. https://doi.org/10.3390/fractalfract7020199

AMA Style

Alb Lupaş A, Cătaş A. Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation. Fractal and Fractional. 2023; 7(2):199. https://doi.org/10.3390/fractalfract7020199

Chicago/Turabian Style

Alb Lupaş, Alina, and Adriana Cătaş. 2023. "Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation" Fractal and Fractional 7, no. 2: 199. https://doi.org/10.3390/fractalfract7020199

Article Metrics

Back to TopTop