Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions
Abstract
:1. Introduction
2. Preliminaries
3. Existence of Solutions
- (H1)
- Let , be a partition of the interval J, such that, and let be a piecewise constant function with respect to , i.e., , where
- (H2)
- Let and there exist constants, , such that
- (H3)
- Let such that is strongly measurable in t and continuous in y and z, and there exist constants, , such that
4. Stability of Solutions
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovácik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslov. Math. J. 1991, 41, 116, 592–618. [Google Scholar]
- Sharapudinov, I.I. The topology of the space Lp(t)([0; 1]). Mat. Zametki. 1979, 26, 613–632. [Google Scholar]
- Sharapudinov, I.I. Approximation of functions in the metric of the space Lp(t)([a; b] and quadrature formulas. In Constructive Function Theory; Proceedings of the Bulgarian Academy of Sciences: Sofia, Bulgaria, 1983; Volume 81, pp. 189–193. [Google Scholar]
- Aboulaich, R.; Boujena, S.; El Guarmah, E. Sur un modèle non-linéaire pour le débruitage de l’image. Comptes Rendus Math. Acad. Sci. Paris. 2007, 345, 425–429. [Google Scholar] [CrossRef]
- Aboulaich, R.; Meskine, D.; Souissi, A. New diffusion models in image processing. Comput. Math. Appl. 2008, 56, 874–882. [Google Scholar] [CrossRef]
- Bollt, E.M.; Chartrand, R.; Esedoglu, S.; Schultz, P.; Vixie, K.R. Graduated adaptive image denoising local compromise between total variation and isotropic diffusion. Adv. Comput. Math. 2009, 31, 61–85. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, W.; Zeng, Q.; Liu, Y. A nonstandard smoothing in reconstruction of apparent diffusion coeffcient profiles from diffusion weighted images. Inverse Probl. Imaging 2008, 2, 205–224. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
- Wunderli, T. On timeows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl. 2010, 364, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Barton, T.A.; Zhang, B. Lp-solutions of fractional differential equations. Nonlinear Stud. 2012, 2, 161–177. [Google Scholar]
- Dong, B.H.; Fu, Z.W.; Xu, J.S. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann–Liouville fractional differential equations. Sci. China Math. 2018, 61, 1807–1824. [Google Scholar] [CrossRef]
- Refice, A.; Inc, M.; Hashemi, M.S.; Souid, M.S. Boundary value problem of Riemann–Liouville fractional differential equations in the variable exponent Lebesgue spaces Lp(.). J. Geom. Phys. 2022, 178, 104554. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Guirao, J.L.G.; Güunerhan, H. Terminal value problem for Riemann–Liouville fractional differential equation in the variable exponent Lebesgue space Lp(.). Math. Meth. Appl. Sci. 2023, 1–19. [Google Scholar] [CrossRef]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Hristova, S.; Benkerrouche, A.; Souid, M.S.; Hakem, A. Boundary value problems of Hadamard fractional differential equations of variable order. Symmetry 2021, 13, 896. [Google Scholar] [CrossRef]
- Luo, D.; Abdeljawad, T. Ulam-Hyers Stability Results for a Novel Nonlinear Nabla Caputo Fractional Variable-Order Difference System. Turk. J. Math. 2021, 45, 456–470. [Google Scholar] [CrossRef]
- Luo, D.; Alam, M.; Zada, A.; Riaz, U.; Luo, Z. Existence and Stability of Implicit Fractional Differential Equations with Stieltjes Boundary Conditions Involving Hadamard Derivatives. Complexity 2021, 2021, 8824935. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Luo, Z.; Zada, A. Ulam-Hyers Stability of Caputo-Type Fractional Stochastic Differential Equations with Time Delays. Math. Probl. Eng. 2021, 2021, 5599206. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Zhu, Q. Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons Fractals 2022, 156, 111822. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order. Surv. Math. Its Appl. 2008, 3, 1–12. [Google Scholar]
- Abdulahad, J.G.; Murad, S.A. Local Existence Theorem of Fractional Differential Equations in Lp Space. Raf. J. Comp. Maths. 2012, 9, 2. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differenatial Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lupinska, B.; Odzijewicz, T.; Schmeidel, E. On the solutions to a generalized fractional cauch problem. Appl. Anal. Discret. Math. 2016, 10, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Lupinska, B.; Odzijewicz, T.; Schmeidel, E. Some properties of generalized fractional integrals and derivatives. Aip Conf. Proc. 2016, 1863, 140010. [Google Scholar] [CrossRef]
- Royden, H.L. Real Analysis; Prentice-Hall of India Private Limited: New Delhi, India, 2005. [Google Scholar]
- Guliyev, V.S.; Samko, S.G. Maximal, Potential, and singular operations in the generalized variable exponent Morrey spaces on unbounded sets. J. Math. Sci. 2013, 193, 2. [Google Scholar] [CrossRef]
- Rafeiro, H. Kolmogorov compactness criterion in variable exponent Lebesgue spaces. arXiv 2009, arXiv:0903.3214v1. [Google Scholar]
- Jiahui, A.; Pengyu, C. Uniqueness of solutions to initial value problem of fractional differential equations of variable-order. Dyn. Syst. Appl. 2019, 28, 607–623. [Google Scholar]
- Agarwal, R.P.; O’Regan, D. Infinite Interval Problems for Differential, Difference and Integral Equations; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2001; p. 141. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souid, M.S.; Refice, A.; Sitthithakerngkiet, K. Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions. Fractal Fract. 2023, 7, 198. https://doi.org/10.3390/fractalfract7020198
Souid MS, Refice A, Sitthithakerngkiet K. Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions. Fractal and Fractional. 2023; 7(2):198. https://doi.org/10.3390/fractalfract7020198
Chicago/Turabian StyleSouid, Mohammed Said, Ahmed Refice, and Kanokwan Sitthithakerngkiet. 2023. "Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions" Fractal and Fractional 7, no. 2: 198. https://doi.org/10.3390/fractalfract7020198
APA StyleSouid, M. S., Refice, A., & Sitthithakerngkiet, K. (2023). Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions. Fractal and Fractional, 7(2), 198. https://doi.org/10.3390/fractalfract7020198