Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings
Abstract
:1. Introduction
2. Preliminaries
- is normal if there exists and
- is upper semi-continuous on if for a there exist and yielding for all with
- is fuzzy convex, meaning that for all and ;
- is compactly supported, which means that is compact.
3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier dune function considree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites dune integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
- Fejér, L. Über die Fourierreihen. II. Math. Nat. Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
- Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. Real Acad. A 2022, 116, 53. [Google Scholar] [CrossRef]
- Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
- Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef]
- Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
- Dragomir, S.S. Hermite-Hadamard’s type inequalities for convex functions of self-adjoint operators in Hilbert spaces. Linear Algebra Appl. 2012, 436, 1503–1515. [Google Scholar] [CrossRef]
- Ghazanfari., A.G.; Shakoori, S.; Barani, A.; Dragomir, S.S. Hermite-Hadamard type inequality for operator preinvex functions. arXiv 2013, arXiv:1306.0730. [Google Scholar]
- Ghazanfari, A.G. The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 2014, 6, 52–61. [Google Scholar] [CrossRef]
- Erdas, Y.; Ünlüyol, E.; Sala, S. Some new inequalities of operator m-convex functions and applications for synchronousasynchronous functions. Complex Anal. Oper. Theory 2019, 13, 3871–3881. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X. Hermite-Hadamard type inequalities for operator s-preinvex functions. J. Nonlinear Sci. Appl. 2015, 8, 1070–1081. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X. Hermite-Hadamard type inequalities for operator a-preinvex functions. J. Anal. Number Theory 2017, 5, 13–17. [Google Scholar] [CrossRef]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
- Liu, Z.H.; Motreanu, D.; Zeng, S.D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Wen, C.F.; Yao, J.C.; Zeng, S.D. Existence of solutions for a class of noncoercive variational-hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
- Zeng, S.D.; Migorski, S.; Liu, Z.H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Wen, C.F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
- Ashpazzadeh, E.; Chu, Y.-M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Ullah, S.; Ali, M.; Tuzzahrah, G.F.; Munir, T. Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic methd. Appl. Math. Comput. 2022, 430, 127304. [Google Scholar]
- Barani, A.; Ghazanfari, A.G. Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions. Banach J. Math. Anal. 2015, 9, 9–20. [Google Scholar]
- Omrani, Z.; Rahpeyma, O.P.; Rahimi, H. Some inequalities for operator (p, h)-convex function. J. Math. 2022, 2022, 11. [Google Scholar] [CrossRef]
- Ghazanfari, A.G. Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 2016, 10, 1695–1703. [Google Scholar] [CrossRef]
- Dragomir, S.S. The Hermite-Hadamard type inequalities for operator convex functions. Appl. Math. Comput. 2011, 218, 766–772. [Google Scholar]
- Dragomir, S.S. An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2002, 3, 31. [Google Scholar]
- Dragomir, S.S. An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2012, 2002, 35. [Google Scholar]
- Furuta, T.; Hot, J.M.; Pecaric, J.; Seo, Y. Mond-Pecaric Method in Operator Inequalities: Inequalities for Bounded Self-Adjoint Operators on a Hilbert Space, 2nd ed.; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Mihai, M.V.; Awan, M.U.; Noor, M.A.; Du, T.S.; Khan, A.G. Two dimensional operator preinvex punctions and associated Hermite-Hadamard type inequalities. Filomat 2018, 32, 2825–2836. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mehrez, S.; Sitnik, S.M. Hermite-Hadamard-type integral inequalities for convex functions and their applications. Mathematics 2022, 10, 3127. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Anisotropic (p,q)-equations with competition phenomena. Acta Math. Sci. 2022, 42B, 299–322. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 2022, 316, 249–269. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
- Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics. Math. Mech. Solids 2019, 24, 845–861. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
- Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Podlubny, I. Geometric and physical interpretations of fractional integration and differentiation. Fract. Calc. Appl. Anal. 2001, 5, 230–237. [Google Scholar]
- Dragomir, S.S. Ostrowski type inequalities for Riemann-Liouville fractional integrals of absolutely continuous functions in terms of norms. RGMIA Res. Rep. Collect. 2017, 20, 49. [Google Scholar]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Ögülmüs, H.; Sarikaya, M.Z. Hermite–Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Differential inclusion problems with convolution and discontinuous nonlinearities. Evol. Equ. Control Theory 2020, 9, 1057–1071. [Google Scholar] [CrossRef]
- Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L. Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Khan, K.A.; Matendo Mabela, R.; Alsharif, A.M. Fejer–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel. Math. Prob. Eng. 2022, 2022, 7269033. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. Real Acad. A 2021, 115, 46. [Google Scholar] [CrossRef]
- Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory; Springer-Verlag: Berlin, Germany, 1984. [Google Scholar]
- Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. https://doi.org/10.3390/fractalfract7020171
Khan MB, Catas A, Aloraini N, Soliman MS. Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal and Fractional. 2023; 7(2):171. https://doi.org/10.3390/fractalfract7020171
Chicago/Turabian StyleKhan, Muhammad Bilal, Adriana Catas, Najla Aloraini, and Mohamed S. Soliman. 2023. "Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings" Fractal and Fractional 7, no. 2: 171. https://doi.org/10.3390/fractalfract7020171
APA StyleKhan, M. B., Catas, A., Aloraini, N., & Soliman, M. S. (2023). Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal and Fractional, 7(2), 171. https://doi.org/10.3390/fractalfract7020171