An Interplay of Wigner–Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform
Abstract
:1. Introduction
2. Preliminary
2.1. Quaternion Algebra
2.2. Quaternion Quadratic-Phase Fourier Transform
3. Wigner–Ville Distribution Associated with the Quaternion Quadratic-Phase Fourier Transform (WVD-QQPFT)
3.1. Relationship with the Quaternion Wigner–Ville Distribution
3.2. General Properties of WVD-QQPFT
4. Convolution and Correlation Theorems for the WVD-QQPFT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QWQPFT | Quaternion windowed quadratic-phase Fourier transform |
QPFT | Quadratic-phase Fourier transform |
Q-QPFT | Quaternion quadratic-phase Fourier transform |
WVD | Wigner–Ville distribution |
References
- Castro, L.P.; Haque, M.R.; Murshed, M.M.; Saitoh, S.; Tuan, N.M. Quadratic Fourier transforms. Ann. Funct. Anal. 2014, 5, 10–23. [Google Scholar] [CrossRef]
- Castro, L.P.; Minh, L.T.; Tuan, N.M. New convolutions for quadratic-phase Fourier integral operators and their applications. Mediterr. J. Math. 2018, 15, 1–17. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H.; Urynbassarova, D.; Urynbassarova, A. Quadratic-phase wave packet transform. Optik. Int. J. Light Electron Opt. 2022, 261, 169120. [Google Scholar] [CrossRef]
- Shah, F.A.; Lone, W.Z.; Tantary, A.Y. Short-time quadratic-phase Fourier transform. Optik. Int. J. Light Electron Opt. 2021, 245, 167689. [Google Scholar] [CrossRef]
- Sharma, P.B.; Prasad, A. Convolution and product theorems for the quadratic-phase Fourier transform. Georgian Math. J. 2022, 29, 595–602. [Google Scholar] [CrossRef]
- Saitoh, S. Theory of reproducing kernels: Applications to approximate solutions of bounded linear operator functions on Hilbert spaces. Am. Math. Soc. Trans. Ser. 2010, 230, 107–134. [Google Scholar]
- Prasad, A.; Sharma, P.B. The quadratic-phase Fourier wavelet transform. Math. Meth. Appl. Sci. 2020, 43, 1953–1969. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Scaled ambiguity function and scaled Wigner distribution for LCT signals. Optik. Int. J. Light Electron Opt. 2022, 267, 169678. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Scaled Wigner distribution in the offset linear canonical domain. Optik. Int. J. Light Electron Opt. 2022, 262, 169286. [Google Scholar] [CrossRef]
- Sharma, P.B. The Wigner distribution associated with quadratic-phase Fourier transform. AIP. Conf. Proc. 2022, 2435, 020028. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. Quadratic-phase scaled Wigner distribution: Convolution and correlation. Sig. Imag Vid. Process. 2023. [Google Scholar] [CrossRef]
- Johnston, J.A. Wigner distribution and FM radar signal design. Proc. Inst. Electr. Eng. F-Radar Signal Process. 1989, 136, 81–88. [Google Scholar] [CrossRef]
- Dhok, S.; Pimpalkhute, V.; Chandurkar, A.; Bhurane, A.; Sharma, M.; Acharya, U.R. Automated phase classification in cyclic alternating patterns in sleep stages using Wigner–Ville Distribution based features. Comput. Biol. Med. 2020, 119, 103691. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Cao, W.; Aarniovuori, L.; Pang, H.; Lin, Y.; Li, G. Classification of Power Quality Disturbances Using Wigner–Ville Distribution and Deep Convolutional Neural Networks. IEEE Access 2019, 7, 119099–119109. [Google Scholar] [CrossRef]
- Lopac, N.; Hržić, F.; Vuksanović, I.P.; Lerga, J. Detection of Non-Stationary GW Signals in High Noise From Cohen’s Class of Time—Frequency Representations Using Deep Learning. IEEE Access 2022, 10, 2408–2428. [Google Scholar] [CrossRef]
- Hitzer, E. Quaternion Fourier transform on quaternion fields and general- izations. Adv. Appl. Clifford Algebr. 2007, 17, 497–517. [Google Scholar] [CrossRef]
- Mawardi, B.; Hitzer, E.; Hayashi, A.; Ashino, R. An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 2008, 56, 2411–2417. [Google Scholar]
- Mawardi, B.; Hitzer, E.; Ashino, R.; Vaillancourt, R. Windowed Fourier transform for two-dimensional quaternionic signals. Appl. Math. Comput. 2010, 216, 2366–2379. [Google Scholar]
- Pei, S.C.; Ding, J.J.; Chang, J.H. Efficient implementation of quaternion Fourier transform, convolution and correlation by 2-D complex FFT. IEEE Trans. Signal Process. 2001, 49, 2783–2797. [Google Scholar]
- Sangwine, S.J.; Ell, T.A. Hyper complex Fourier transforms of color images. IEEE Trans. Image Process. 2007, 16, 22–35. [Google Scholar]
- Bayro-Corrochano, E.; Trujillo, N.; Naranjo, M. Quaternion Fourier descriptors for the preprocessing and recognition of spoken words using images of spa- tiotemporal representations. J. Math. Imaging Vis. 2007, 28, 179–190. [Google Scholar] [CrossRef]
- Bas, P.; LeBihan, N.; Chassery, J.M. Color image water marking using quaternion Fourier transform. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 6–10 April 2003; pp. 521–524. [Google Scholar]
- Kou, K.I.; Ou, J.; Morais, J. Uncertainty principles associated with quaternionic linear canonical transforms. Math. Meth. Appl. Sci. 2016, 39, 2722–2736. [Google Scholar] [CrossRef]
- Kassimi, M.E.; Haoui, Y.E.; Fahlaoui, S. The Wigner–Ville distribution associated with the quaternion offset linear canonical transform. Anal. Math. 2019, 45, 787–802. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles. J. Anal. 2021, 30, 637–649. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Towards Quaternion Quadratic-phase Fourier transform. arXiv 2022, arXiv:2207.09926v1. [Google Scholar]
- Gupta, B.; Verma, K.A. Short time quaternion quadratic-phase Fourier transform and its uncertainty principles. arXiv 2022, arXiv:2204.09017v1. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. The 2-D Hyper-complex Gabor Quadratic-Phase Fourier Transform and Uncertainty Principles. J. Anal. 2022, 21, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.C. Novel Wigner distribution and ambiguity function associated with the linear canonical transform. Optik. Int. J. Light Electron Opt. 2015, 127, 995–5012. [Google Scholar] [CrossRef]
- Zhang, Z.C. Unified Wigner–Ville distribution and ambiguity function in thelinear canonical transform domain. Optik. Int. J. Light Electron Opt. 2015, 114, 45–60. [Google Scholar]
- Fan, X.L.; Kou, K.I.; Li, M.S. Quaternion Wigner–Ville distribution associated with the linear canonical transforms. Sig. Process. 2017, 130, 129–141. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Almanjahi, I.; Dar, A.H.; Dar, J.G. Wigner–Ville Distribution and Ambiguity function Associated with the Quaternion Offset Linear Canonical Transform. Demon. Math. 2022, 55, 786–797. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Convolution and correlation theorems for Wigner–Ville distribution associated with the quaternion offset linear canonical transform. Sig. Imag Vid. Processing 2022, 16, 1235–1242. [Google Scholar] [CrossRef]
- Kou, K.; Ou, J.Y.; Morais, J. On uncertainty principle for quaternionic linear canonical transform. Abstr. Appl. Anal. 2013, 2013, 725952. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Quaternion windowed linear canonical transform of two dimensional signals. Adv. Appl. Clifford Algs. 2020, 30, 1–20. [Google Scholar] [CrossRef]
- Guanlei, X.; Xiaotong, W.; Xiaogang, X. Uncertainty inequalities for linear canonical transform. IET Signal Process. 2009, 3, 392–402. [Google Scholar] [CrossRef]
- Bahri, M. On Two-Dimensional Quaternion Wigner–Ville Distribution. J. Appl. Math. 2014, 2014, 139471. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, M.Y.; Dar, A.H.; Nurhidayat, I.; Pinelas, S. An Interplay of Wigner–Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform. Fractal Fract. 2023, 7, 159. https://doi.org/10.3390/fractalfract7020159
Bhat MY, Dar AH, Nurhidayat I, Pinelas S. An Interplay of Wigner–Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform. Fractal and Fractional. 2023; 7(2):159. https://doi.org/10.3390/fractalfract7020159
Chicago/Turabian StyleBhat, Mohammad Younus, Aamir Hamid Dar, Irfan Nurhidayat, and Sandra Pinelas. 2023. "An Interplay of Wigner–Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform" Fractal and Fractional 7, no. 2: 159. https://doi.org/10.3390/fractalfract7020159
APA StyleBhat, M. Y., Dar, A. H., Nurhidayat, I., & Pinelas, S. (2023). An Interplay of Wigner–Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform. Fractal and Fractional, 7(2), 159. https://doi.org/10.3390/fractalfract7020159