Positive Solutions for Some Semipositone Fractional Boundary Value Problems on the Half-Line
Abstract
:1. Introduction
- (i)
- denotes the set of nonnegative Borel measurable functions in
- (ii)
- For the notation on a set S means there exists such that for all
- (iii)
- Let (resp. be the set of all (resp. nonnegative) continuous functions on
- (iv)
- is continuous on
- (v)
- (vi)
- (vii)
- For we let
- is a nontrivial function in
- is a continuous function and there exists such that
- there exists a function such that
2. Preliminaries
3. Proof of Main Result
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations, Vol. 198 of Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivatives (Theory and Applications); Gordon and Breach: Montreux, Switzerland, 1993. [Google Scholar]
- Agarwal, R.P.; Benchohra, M.; Hamani, S.; Pinelas, S. Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half line. Dyn. Contin. Discret. Impuls. Syst. Ser. Math. Anal. 2011, 18, 235–244. [Google Scholar]
- Agarwal, R.P.; O’Regan, D. Infinite Interval Problems for Differential, Difference and Integral Equations; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Bachar, I.; Mâagli, H. Existence and global asymptotic behavior of positive solutions for superlinear fractional Dirichlet problems on the half-line. Fract. Calc. Appl. Anal. 2016, 19, 1031–1049. [Google Scholar] [CrossRef]
- Bachar, I.; Mâagli, H. Existence and global asymptotic behavior of positive solutions for nonlinear fractional Dirichlet problems on the half-Line. Abstr. Appl. Anal. 2014, 2014, 537971. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Mâagli, H. Existence of positive solutions for a nonlinear fractional differential equations. Electron. J. Dierential Equ. 2013, 2013, 1–5. [Google Scholar]
- Mâagli, H.; Dhifli, A. Positive solutions to a nonlinear fractional Dirichlet problem on the half-space. Electron. J. Differ. Equ. 2014, 50, 1–7. [Google Scholar]
- Zhao, X.; Ge, W. Unbounded solutions for a fractional boundary value problems on the infinite interval. Acta Appl. Math. 2010, 109, 495–505. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G.; Agarwal, R.P.; Al-Yami, M.; Shammakh, W. Nonlocal Integrodifferential Boundary Value Problem for Nonlinear Fractional Differential Equations on an Unbounded Domain. Abstr. Appl. Anal. 2013, 2013, 813903. [Google Scholar] [CrossRef]
- Cerdik, T.S.; Deren, F.Y.; Hamal, N.A. Unbounded solutions for boundary value problems of Riemann Liouville fractional differential equations on the half-line. Fixed Point Theory 2018, 19, 93–106. [Google Scholar] [CrossRef]
- Aris, R. Introduction to the Analysis of Chemical Reactors; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Anuradha, V.; Hai, D.D.; Shivaji, R. Existence results for superlinear semipositone BVP’s. Proc. Am. Math. Soc. 1996, 124, 746–757. [Google Scholar] [CrossRef]
- Du, X. Existence of Positive Solutions to Semipositone Fractional Differential Equations. Appl. Math. 2016, 7, 1484–1489. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for third order semipositone boundary value problems. Appl. Math. Lett. 2009, 22, 1154–1160. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.; Yang, B. Positive solutions for a semipositone fractional boundary value problem with a forcing term. Fract. Calc. Appl. Anal. 2012, 15, 8–24. [Google Scholar] [CrossRef]
- Ma, R.; Wang, S. Positive Solutions for Some Semi-positone Problems with Nonlinear Boundary Conditions via Bifurcation Theory. Mediterr. J. Math. 2020, 17, 12. [Google Scholar] [CrossRef]
- Toumi, F.; Wanassi, O.K. Existence of positive solutions for a semipositone fractional differential equation with perturbed term. Ric. Mat. 2020, 69, 187–206. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. Existence of positive solutions for second-order semipositone differential equations on the half-line. Appl. Math Comput. 2007, 185, 628–635. [Google Scholar] [CrossRef]
- Liu, X.; Jia, M. Multiple solutions of nonlocal boundary value problems for fractional differential equations on the half-line. Electron. J. Qual. Theory Differ. Equ. 2011, 56, 1–14. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J.J. Fractional order differential equations on an unbounded domain. Nonlinear Anal. 2010, 72, 580–586. [Google Scholar] [CrossRef]
- Baleanu, D.; Mustafa, O.G. On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 2010, 59, 1835–1841. [Google Scholar] [CrossRef]
- Benmezaï, A. Positive solutions for semipositone singular α-order (2 < α <3) fractional BVPs on the half-line with Dβ-derivative dependence. Fract. Differ. Calc. 2020, 10, 237–254. [Google Scholar]
- Hao, X.; Sun, H.; Liu, L.; Wang, D.B. Positive solutions for semipositone fractional integral boundary value problem on the half-line. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. Mat. 2019, 113, 3055–3067. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachar, I. Positive Solutions for Some Semipositone Fractional Boundary Value Problems on the Half-Line. Fractal Fract. 2023, 7, 774. https://doi.org/10.3390/fractalfract7110774
Bachar I. Positive Solutions for Some Semipositone Fractional Boundary Value Problems on the Half-Line. Fractal and Fractional. 2023; 7(11):774. https://doi.org/10.3390/fractalfract7110774
Chicago/Turabian StyleBachar, Imed. 2023. "Positive Solutions for Some Semipositone Fractional Boundary Value Problems on the Half-Line" Fractal and Fractional 7, no. 11: 774. https://doi.org/10.3390/fractalfract7110774
APA StyleBachar, I. (2023). Positive Solutions for Some Semipositone Fractional Boundary Value Problems on the Half-Line. Fractal and Fractional, 7(11), 774. https://doi.org/10.3390/fractalfract7110774