Next Article in Journal
Constructing Analytical Solutions of the Fractional Riccati Differential Equations Using Laplace Residual Power Series Method
Previous Article in Journal
Switching-Jumps-Dependent Quasi-Synchronization Criteria for Fractional-Order Memrisive Neural Networks
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Implicit Coupled Hadamard Fractional Differential Equations with Generalized Hadamard Fractional Integro-Differential Boundary Conditions

1
School of Science, Changzhou Institute of Technology, Changzhou 213002, China
2
Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar 29050, Pakistan
3
Department of Mathematics, University of Peshawar, Peshawar 25120, Pakistan
4
Faculty of Engineering Science, Ghulam Ishaq Khan Institute of Engineering Science and Technology, Topi 23640, Pakistan
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(1), 13; https://doi.org/10.3390/fractalfract7010013
Submission received: 15 November 2022 / Revised: 8 December 2022 / Accepted: 18 December 2022 / Published: 24 December 2022
(This article belongs to the Section General Mathematics, Analysis)

Abstract

:
This study is devoted to studying the existence and uniqueness of solutions for Hadamard implicit fractional differential equations with generalized Hadamard fractional integro-differential boundary conditions by utilizing the contraction principle of the Banach and Leray–Schauder fixed point theorems. Moreover, with two different approaches, the Hyers–Ulam stabilities are also discussed. Different ordinary differential equations of the third order with different boundary conditions (e.g., initial, anti periodic and integro-differential) can be obtained as a special case for our proposed model. Finally, for verification, an example is presented, and some graphs for the particular variables and particular functions are drawn using MATLAB.

1. Introduction

The notion of fractional derivatives was first introduced in 1695, when Leibniz used the notation d n d χ n for the n t h derivative and de L’Hospital questioned what this may imply when n is 1 2 (see [1]). The generalization of integer-order derivatives and integration is actually the fractional order derivatives and integration. Riemann, Liouville, Caputo, Hadamard, Hilfer, Riesz, Erdelyi–Kober, Fourier and Laplace worked on non-integer-order fractional derivatives and made the fractional calculus more informative for mathematicians. An operator in the form of a fractional order is a global one which applies as a tool for many complicated applied phenomena (e.g., biological mathematical models [2], signal as well as image processes [3], mathematical chemistry [4], control theory [5] and processes involving dynamics [6]). For more details about fractional order differential equations ( FDE s ), see [7,8,9,10].
Among the qualitative properties of the nonlinear FDE s , the existence of solutions is the most important one and the first priority of researchers. As a result, FDE s involving conditions on the boundary such as initial, anti-periodic ( AP ) and periodic, integro-differential multi-points, have been investigated [11,12,13]. The idea of Hyers–Ulam stability ( HUS ) began in 1940 [14]. Among other types, it is an important type of stability which guarantees an exact solution for each approximate solution within a specific boundary. Therefore, it can be required in a number of applications such as optimization, numerical analysis, error analysis, biology and economics [15,16,17]. Alqifiary et al. [18] investigated the generalized Hyers–Ulam stability ( GHUS ) for linear DE s . Razaei et al. [19] studied HUS by utilizing the approach of a Laplace transform for linear DE s . Wang et al. [20] obtained the HUS of two different kinds of FDE s . Liu et al. [21] achieved the HUS of linear Caputo–Fabrizio FDE s . Liu et al. [22] gave the HUS of linear Caputo–Fabrizio FDE s by utilizing the property of a Mittag–Leffler kernel and using the method of Laplace transformation.
Luo et al. [23] discussed the existence, uniqueness ( EU ) and HUS of
H D κ v ( χ ) + μ ( χ , v ( χ ) , H D κ v ( χ ) ) = 0 ; χ M , v ( χ ) | χ = 1 = H D κ 2 v ( χ ) | χ = 1 = 0 , H D κ 1 v ( χ ) | χ = 2 = α [ v ] + 1 ζ φ ( χ ) H D β v ( χ ) d χ ,
They also extended their results to a system of the form
H D κ v ( χ ) + μ ( χ , v ( χ ) , H D σ w ( χ ) ) = 0 ; χ M , H D σ w ( χ ) + ν ( χ , w ( χ ) , H D κ v ( χ ) ) = 0 ; χ M , v ( χ ) | χ = 1 = H D κ 2 v ( χ ) | χ = 1 = 0 , H D κ 1 v ( χ ) | χ = 2 = α [ v ] + 1 ζ φ κ ( χ ) H D β v ( χ ) d χ , w ( χ ) | χ = 1 = H D σ 2 w ( χ ) | χ = 1 = 0 , H D σ 1 w ( χ ) | χ = 2 = γ [ w ] + 1 ξ φ σ ( χ ) H D δ w ( χ ) d χ ,
where κ , σ ( 2 , 3 ] and H D ( · ) are the Hadamard fractional derivative of the order ( · ) with κ 1 β > 0 and σ 1 δ > 0 , φ κ , φ σ L 1 [ 1 , 2 ] is nonnegative and α [ v ] and γ [ w ] are linear functions.
The above study motivated us to study the EU and at least one solution of the following coupled system ( CS ) of FDE s in the sense of Hadamard derivatives:
H D κ v ( χ ) μ ( χ , w ( χ ) , H D κ v ( χ ) ) = 0 ; χ M , H D σ w ( χ ) ν ( χ , v ( χ ) , H D σ w ( χ ) ) = 0 ; χ M ,
having the generalized Hadamard fractional integro-differential boundary conditions
H D κ 1 v ( 1 ) = a 0 H D κ 1 v ( T ) + η 1 H I κ 1 v ( T ) , H D κ 2 v ( 1 ) = b 0 H D κ 2 v ( T ) + η 2 H I κ 2 v ( T ) , H D κ 3 v ( 1 ) = c 0 H D κ 3 v ( T ) + η 3 H I κ 3 v ( T ) , H D σ 1 w ( 1 ) = a 1 H D σ 1 w ( T ) + η 4 H I σ 1 w ( T ) , H D σ 2 w ( 1 ) = b 1 H D σ 2 w ( T ) + η 5 H I σ 2 w ( T ) , H D σ 3 w ( 1 ) = c 1 H D σ 3 w ( T ) + η 6 H I σ 3 w ( T ) ,
where 2 < κ , σ 3 , M = [ 1 , T ] , T > 1 , a i , b i , c i 1 for i = 0 , 1 and η j ( j = 1 , 2 , , 6 ) are coefficients of the integrals in boundary conditions (BCs). μ , ν : M × R 2 R are continuous functions, and H D κ / H I κ and H D σ / H I σ are the Hadamard derivatives and integrals of the fractional orders κ and σ , respectively.
The said system of Hadamard FDE s (Equation (1)) is the generalization of third-order ordinary differential equations ( ODE s ), and according to our information, the proposed ODE s have several uses in different engineering fields and the area of applied sciences [24,25,26,27]. It is attractive that some mathematical modeling of numerous physical phenomena gives systems in a form coupled with the aforementioned third-order ODE s . Such models are linked jerk-type equations, which are mainly used in the processes of manufacturing [28,29,30]. Additionally, for η i = 0 ( i = 1 , 2 , , 6 ) and a i = b i = c i = 1 ( i = 0 , 1 ) , we can acquire BCs in the form of AP , which often occur in the models of different physical phenomena (e.g., in the partial, ordinary and DE s with impulses, AP trigonometric polynomials in the investigation of the interpolation issues, AP wavelets and equations in the discrete form) [31,32,33,34].

2. Background Materials

Let N ( M ) be the space of all continuous functions on M , which is a Banach space with v = max χ M | v ( χ ) | . Let W = N r ( M ) N ( M ) be the space of all functions v such that for χ M and r 0 , we have v r ( χ ) = ( log χ ) r v ( χ ) . Obviously, W is a Banach space with
v W = max { sup χ M ( log χ ) r | v ( χ ) | , sup χ M ( log χ ) r | H D κ v ( χ ) | } .
Additionally, W × W , ( v , w ) W × W is a Banach space with norm ( v , w ) W × W = v W + w W :
Definition 1
([35]). The κ > 0 order Hadamard integral for v : R + R (continuous) is represented by
H I κ v ( χ ) = 1 Γ ( κ ) 1 χ ( log χ log s ) κ 1 v ( s ) ds s .
Definition 2
([35]). The Hadamard derivative of the order κ > 0 for v : R + R (continuous) is given by
H D κ v ( χ ) = 1 Γ ( n κ ) ( χ d d χ ) n 1 χ ( log χ log s ) n κ + 1 v ( s ) ds s ,
where n = [ κ ] + 1 and [ κ ] is the integer value of κ.
It can be observed that for ϱ > 1 , ϱ κ 1 , κ 2 , , κ n , we have
H D κ log ( χ ) ϱ = Γ ( ϱ + 1 ) Γ ( ϱ κ + 1 ) log ( χ ) ϱ κ
and
H D κ log ( χ ) κ i = 0 , i = 1 , 2 , , n .
In addition, we have
H I κ log ( χ ) ϱ = Γ ( ϱ + 1 ) Γ ( ϱ + κ + 1 ) log ( χ ) ϱ + κ .
Lemma 1
([35]). For a Hadamard FDE of the order κ > 0 , we have
H D κ v ( χ ) = μ ( χ ) ,
which is
H I κ H D κ v ( χ ) = H I κ μ ( χ ) + k 1 ( log χ ) κ 1 + k 2 ( log χ ) κ 2 + + k n 1 ( log χ ) κ ( n 1 ) + k n ( log χ ) κ n ,
where k 1 , k 2 , , k n are real constants.

3. Existence of Solutions

Lemma 2.
Assume that μ N ( M ) and κ ( 2 , 3 ] . Then, the solution of
H D κ v ( χ ) = μ ( χ ) ; χ M , H D κ 1 v ( 1 ) = a 0 H D κ 1 v ( T ) + η 1 H I κ 1 v ( T ) , H D κ 2 v ( 1 ) = b 0 H D κ 2 v ( T ) + η 2 H I κ 2 v ( T ) , H D κ 3 v ( 1 ) = c 0 H D κ 3 v ( T ) + η 3 H I κ 3 v ( T ) ,
is represented by
v ( χ ) = 1 T G κ ( χ , s ) μ ( s ) d s ,
where
G κ ( χ , s ) = ( log χ s ) κ 1 Γ ( κ ) ( log χ ) κ 1 a 0 δ 11 δ + ( log χ ) κ 2 a 0 δ 21 δ + ( log χ ) κ 3 a 0 δ 31 δ ( log χ ) κ 1 b 0 δ 12 δ + ( log χ ) κ 2 b 0 δ 22 δ + ( log χ ) κ 3 b 0 δ 32 δ log T s 1 2 ( log χ ) κ 1 c 0 δ 13 δ + ( log χ ) κ 2 c 0 δ 23 δ + ( log χ ) κ 3 c 0 δ 33 δ ( log T s ) 2 1 Γ ( 2 κ 1 ) ( log χ ) κ 1 η 1 δ 11 δ + ( log χ ) κ 2 η 1 δ 21 δ + ( log χ ) κ 3 η 1 δ 31 δ ( log T s ) 2 κ 2 1 Γ ( 2 κ 2 ) ( log χ ) κ 1 η 2 δ 12 δ + ( log χ ) κ 2 η 2 δ 22 δ + ( log χ ) κ 3 η 2 δ 32 δ ( log T s ) 2 κ 3 1 Γ ( 2 κ 3 ) ( log χ ) κ 1 η 3 δ 13 δ + ( log χ ) κ 2 η 3 δ 23 δ + ( log χ ) κ 3 η 3 δ 33 δ ( log T s ) 2 κ 4 , 1 s < χ T , ( log χ ) κ 1 a 0 δ 11 δ + ( log χ ) κ 2 a 0 δ 21 δ + ( log χ ) κ 3 a 0 δ 31 δ ( log χ ) κ 1 b 0 δ 12 δ + ( log χ ) κ 2 b 0 δ 22 δ + ( log χ ) κ 3 b 0 δ 32 δ log T s 1 2 ( log χ ) κ 1 c 0 δ 13 δ + ( log χ ) κ 2 c 0 δ 23 δ + ( log χ ) κ 3 c 0 δ 33 δ ( log T s ) 2 1 Γ ( 2 κ 1 ) ( log χ ) κ 1 η 1 δ 11 δ + ( log χ ) κ 2 η 1 δ 21 δ + ( log χ ) κ 3 η 1 δ 31 δ ( log T s ) 2 κ 2 1 Γ ( 2 κ 2 ) ( log χ ) κ 1 η 2 δ 12 δ + ( log χ ) κ 2 η 2 δ 22 δ + ( log χ ) κ 3 η 2 δ 32 δ ( log T s ) 2 κ 3 1 Γ ( 2 κ 3 ) ( log χ ) κ 1 η 3 δ 13 δ + ( log χ ) κ 2 η 3 δ 23 δ + ( log χ ) κ 3 η 3 δ 33 δ ( log T s ) 2 κ 4 , 1 χ < s T .
Proof. 
By applying Lemma 1, we obtain
v ( χ ) = H I κ μ ( χ ) + k 1 ( log χ ) κ 1 + k 2 ( log χ ) κ 2 + k 3 ( log χ ) κ 3 .
By utilizing the BCs, Equation (4) implies
k 1 Γ ( κ ) a 0 1 + η 1 ( log T ) 2 κ 2 Γ ( 2 κ 1 ) + k 2 η 1 Γ ( κ 1 ) ( log T ) 2 κ 3 Γ ( 2 κ 2 ) + k 3 η 1 Γ ( κ 2 ) ( log T ) 2 κ 4 Γ ( 2 κ 3 )
= a 0 H I μ ( T ) η 1 H I 2 κ 1 μ ( T ) , k 1 Γ ( κ ) b 0 log T + η 2 ( log T ) 2 κ 3 Γ ( 2 κ 2 ) + k 2 Γ ( κ 1 ) b 0 1 + η 2 ( log T ) 2 κ 4 Γ ( 2 κ 3 )
+ k 3 η 2 Γ ( κ 2 ) ( log T ) 2 κ 5 Γ ( 2 κ 4 ) = b 0 H I 2 μ ( T ) η 2 H I 2 κ 2 μ ( T ) , k 1 Γ ( κ ) c 0 ( log T ) 2 2 + η 3 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) + k 2 Γ ( κ 1 ) c 0 log T + η 3 ( log T ) 2 κ 5 Γ ( 2 κ 4 )
+ k 3 Γ ( κ 2 ) c 0 1 + η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) = c 0 H I 3 μ ( T ) η 3 H I 2 κ 3 μ ( T ) .
We can write Equations (5)–(7) in matrix form:
A K = I , implies K = A 1 I
where
A = Γ ( κ ) a 0 1 + η 1 ( log T ) 2 κ 2 Γ ( 2 κ 1 ) η 1 Γ ( κ 1 ) ( log T ) 2 κ 3 Γ ( 2 κ 2 ) η 1 Γ ( κ 2 ) ( log T ) 2 κ 4 Γ ( 2 κ 3 ) Γ ( κ ) b 0 log T + η 2 ( log T ) 2 κ 3 Γ ( 2 κ 2 ) Γ ( κ 1 ) b 0 1 + η 2 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) η 2 Γ ( κ 2 ) ( log T ) 2 κ 5 Γ ( 2 κ 4 ) Γ ( κ ) c 0 ( log T ) 2 2 + η 3 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) Γ ( κ 1 ) c 0 log T + η 3 ( log T ) 2 κ 5 Γ ( 2 κ 4 ) Γ ( κ 2 ) c 0 1 + η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) ,
K = k 1 k 2 k 3 , I = a 0 H I μ ( T ) η 1 H I 2 κ 1 μ ( T ) b 0 H I 2 μ ( T ) η 2 H I 2 κ 2 μ ( T ) c 0 H I 3 μ ( T ) η 3 H I 2 κ 3 μ ( T ) and A 1 = 1 det ( A ) δ 11 δ 12 δ 13 δ 21 δ 22 δ 23 δ 31 δ 32 δ 33 .
Here, the determinant of matrix A is
det ( A ) = Γ ( κ ) Γ ( κ 1 ) Γ ( κ 2 ) a 0 1 + η 1 ( log T ) 2 κ 2 Γ ( 2 κ 1 ) [ ( b 0 1 ) c 0 1 + η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) + ( c 0 ( 2 κ 3 ) 1 ) η 2 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) + η 2 η 3 ( log T ) 4 κ 10 Γ ( 2 κ 3 ) Γ ( 2 κ 5 ) + η 2 η 3 ( log T ) 4 κ 10 Γ ( 2 κ 4 ) Γ ( 2 κ 4 ) ] Γ ( κ ) Γ ( κ 1 ) Γ ( κ 2 ) η 1 ( log T ) 2 κ 3 Γ ( 2 κ 2 ) [ ( c 0 1 ) b 0 log T + b 0 log T η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) [ c 0 ( 4 κ 2 14 κ + 10 ) + 2 ] η 2 ( log T ) 2 κ 3 2 Γ ( 2 κ 2 ) + η 2 η 3 ( log T ) 4 κ 9 Γ ( 2 κ 2 ) Γ ( 2 κ 5 ) η 2 η 3 ( log T ) 4 κ 9 Γ ( 2 κ 3 ) Γ ( 2 κ 4 ) ] + Γ ( κ ) Γ ( κ 1 ) Γ ( κ 2 ) η 1 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) [ ( b 0 + 1 ) c 0 ( log T ) 2 2 ( c 0 ( 2 κ 5 ) ) η 2 ( log T ) 2 κ 2 Γ ( 2 κ 2 ) + ( b 0 ( 2 κ 3 ) + 1 ) η 3 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) + η 2 η 3 ( log T ) 4 κ 8 Γ ( 2 κ 2 ) Γ ( 2 κ 4 ) η 2 η 3 ( log T ) 4 κ 8 Γ ( 2 κ 3 ) Γ ( 2 κ 3 ) ] = δ 0
In addition, the co-factors are
δ 11 = Γ ( κ 1 ) Γ ( κ 2 ) [ ( b 0 1 ) c 0 1 + η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) + ( c 0 ( 2 κ 3 ) 1 ) η 2 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) + η 2 η 3 ( log T ) 4 κ 10 Γ ( 2 κ 3 ) Γ ( 2 κ 5 ) + η 2 η 3 ( log T ) 4 κ 10 Γ ( 2 κ 4 ) Γ ( 2 κ 4 ) ] , δ 12 = Γ ( κ ) Γ ( κ 2 ) [ ( c 0 1 ) b 0 log T + b 0 log T η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) + η 2 η 3 ( log T ) 4 κ 9 Γ ( 2 κ 2 ) Γ ( 2 κ 5 ) + [ c 0 ( 4 κ 2 + 14 κ 10 ) 2 ] η 2 ( log T ) 2 κ 3 2 Γ ( 2 κ 2 ) η 2 η 3 ( log T ) 4 κ 9 Γ ( 2 κ 3 ) Γ ( 2 κ 4 ) ] , δ 13 = Γ ( κ ) Γ ( κ 1 ) [ ( b 0 + 1 ) c 0 ( log T ) 2 2 ( c 0 ( 2 κ 5 ) ) η 2 ( log T ) 2 κ 2 Γ ( 2 κ 2 ) + η 2 η 3 ( log T ) 4 κ 8 Γ ( 2 κ 2 ) Γ ( 2 κ 4 ) + ( b 0 ( 2 κ 3 ) + 1 ) η 3 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) η 2 η 3 ( log T ) 4 κ 8 Γ ( 2 κ 3 ) Γ ( 2 κ 3 ) ] , δ 21 = Γ ( κ 1 ) Γ ( κ 2 ) ( c 0 ( 4 2 κ ) 1 ) η 1 ( log T ) 2 κ 3 Γ ( 2 κ 2 ) + η 1 η 3 ( log T ) 4 κ 9 Γ ( 2 κ 2 ) Γ ( 2 κ 5 ) η 1 η 3 ( log T ) 4 κ 9 Γ ( 2 κ 3 ) Γ ( 2 κ 4 ) , δ 22 = Γ ( κ ) Γ ( κ 2 ) [ ( c 0 1 ) ( a 0 1 ) + ( a 0 1 ) η 3 ( log T ) 2 κ 6 Γ ( 2 κ 5 ) ( c 0 ( 4 κ 2 10 κ 4 ) + 2 ) η 1 ( log T ) 2 κ 2 2 Γ ( 2 κ 3 ) + η 1 η 3 ( log T ) 4 κ 8 Γ ( 2 κ 1 ) Γ ( 2 κ 5 ) η 1 η 3 ( log T ) 4 κ 8 Γ ( 2 κ 3 ) Γ ( 2 κ 3 ) ] , δ 23 = Γ ( κ ) Γ ( κ 1 ) [ ( a 0 1 ) c 0 log T c 0 κ η 1 ( log T ) 2 κ 1 Γ ( 2 κ 1 ) + ( a 0 1 ) η 3 ( log T ) 2 κ 5 Γ ( 2 κ 4 ) + η 1 η 3 ( log T ) 4 κ 7 Γ ( 2 κ 1 ) Γ ( 2 κ 4 ) η 1 η 3 ( log T ) 4 κ 7 Γ ( 2 κ 2 ) Γ ( 2 κ 3 ) ] , δ 31 = Γ ( κ 1 ) Γ ( κ 2 ) ( b 0 1 ) η 1 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) η 1 η 2 ( log T ) 4 κ 8 Γ ( 2 κ 2 ) Γ ( 2 κ 4 ) + η 1 η 2 ( log T ) 4 κ 8 Γ ( 2 κ 3 ) Γ ( 2 κ 3 ) , δ 32 = Γ ( κ ) Γ ( κ 2 ) [ ( a 0 1 ) η 2 ( log T ) 2 κ 5 Γ ( 2 κ 4 ) b 0 η 1 ( log T ) 2 κ 3 Γ ( 2 κ 3 ) + η 1 η 2 ( log T ) 4 κ 7 Γ ( 2 κ 1 ) Γ ( 2 κ 4 ) η 1 η 2 ( log T ) 4 κ 7 Γ ( 2 κ 2 ) Γ ( 2 κ 3 ) ] , δ 33 = Γ ( κ ) Γ ( κ 1 ) [ ( a 0 1 ) ( b 0 1 ) + ( a 0 1 ) η 2 ( log T ) 2 κ 4 Γ ( 2 κ 3 ) ( b 0 ( 2 κ 3 ) + 1 ) η 1 ( log T ) 2 κ 2 Γ ( 2 κ 1 ) + η 1 η 2 ( log T ) 4 κ 6 Γ ( 2 κ 1 ) Γ ( 2 κ 3 ) η 1 η 2 ( log T ) 4 κ 6 Γ ( 2 κ 2 ) Γ ( 2 κ 2 ) ] .
Hence, the unknowns are
k 1 = δ 11 δ ( a 0 H I μ ( T ) η 1 H I 2 κ 1 μ ( T ) ) + δ 12 δ ( b 0 H I 2 μ ( T ) η 2 H I 2 κ 2 μ ( T ) ) + δ 13 δ ( c 0 H I 3 μ ( T ) η 3 H I 2 κ 3 μ ( T ) ) , k 2 = δ 21 δ ( a 0 H I μ ( T ) η 1 H I 2 κ 1 μ ( T ) ) + δ 22 δ ( b 0 H I 2 μ ( T ) η 2 H I 2 κ 2 μ ( T ) ) + δ 23 δ ( c 0 H I 3 μ ( T ) η 3 H I 2 κ 3 μ ( T ) ) , k 3 = δ 31 δ ( a 0 H I μ ( T ) η 1 H I 2 κ 1 μ ( T ) ) + δ 32 δ ( b 0 H I 2 μ ( T ) η 2 H I 2 κ 2 μ ( T ) ) + δ 33 δ ( c 0 H I 3 μ ( T ) η 3 H I 2 κ 3 μ ( T ) ) .
By putting the values of k 0 , k 1 and k 2 into Equation (4), we obtain
v ( χ ) = 1 Γ ( κ ) 1 χ ( log χ s ) κ 1 μ ( s ) ds s ( log χ ) κ 1 a 0 δ 11 δ + ( log χ ) κ 2 a 0 δ 21 δ + ( log χ ) κ 3 a 0 δ 31 δ 1 T μ ( s ) ds s ( log χ ) κ 1 b 0 δ 12 δ + ( log χ ) κ 2 b 0 δ 22 δ + ( log χ ) κ 3 b 0 δ 32 δ 1 T log T s μ ( s ) ds s ( log χ ) κ 1 c 0 δ 13 2 δ + ( log χ ) κ 2 c 0 δ 23 2 δ + ( log χ ) κ 3 c 0 δ 33 2 δ 1 T ( log T s ) 2 μ ( s ) ds s ( log χ ) κ 1 η 1 δ 11 δ Γ ( 2 κ 1 ) + ( log χ ) κ 2 η 1 δ 21 δ Γ ( 2 κ 1 ) + ( log χ ) κ 3 η 1 δ 31 δ Γ ( 2 κ 1 ) 1 T ( log T s ) 2 κ 2 μ ( s ) ds s ( log χ ) κ 1 η 2 δ 12 δ Γ ( 2 κ 2 ) + ( log χ ) κ 2 η 2 δ 22 δ Γ ( 2 κ 2 ) + ( log χ ) κ 3 η 2 δ 32 δ Γ ( 2 κ 2 ) 1 T ( log T s ) 2 κ 3 μ ( s ) ds s ( log χ ) κ 1 η 3 δ 13 δ Γ ( 2 κ 3 ) + ( log χ ) κ 2 η 3 δ 23 δ Γ ( 2 κ 3 ) + ( log χ ) κ 3 η 3 δ 33 δ Γ ( 2 κ 3 ) 1 T ( log T s ) 2 κ 4 μ ( s ) ds s = 1 T G κ ( χ , s ) μ ( s ) ds s ,
where G κ ( χ , s ) is given by Equation (3). □
Remark 1.
If in Equation (3), we place κ = 3 and a 0 = b 0 = c 0 = 1 , then the Green function G κ ( χ , s ) for third-order ODE s with AP BCs will be derived.
Remark 2.
If in Equation (3), we place κ = 3 and a 0 = b 0 = c 0 = 0 , then the solution for the third-order ODE s with the initial BCs can be derived.
Lemma 3.
Let ν N ( M ) , σ ( 2 , 3 ] . Then, the following
H D σ w ( χ ) = ν ( χ ) ; χ M , H D σ 1 w ( 1 ) = a 1 H D σ 1 w ( T ) + η 4 H I σ 1 w ( T ) , H D σ 2 w ( 1 ) = b 1 H D σ 2 w ( T ) + η 5 H I σ 2 w ( T ) , H D σ 3 w ( 1 ) = c 1 H D σ 3 w ( T ) + η 6 H I σ 3 w ( T ) ,
has a (unique) solution presented as
w ( χ ) = 1 T G σ ( χ , s ) ν ( s ) ds s ,
where G σ ( χ , s ) is given by
G σ ( χ , s ) = ( log χ s ) σ 1 Γ ( σ ) ( log χ ) σ 1 a 1 δ 11 * δ * + ( log χ ) σ 2 a 1 δ 21 * δ * + ( log χ ) σ 3 a 1 δ 31 * δ * ( log χ ) σ 1 b 1 δ 12 * δ * + ( log χ ) σ 2 b 1 δ 22 * δ * + ( log χ ) σ 3 b 1 δ 32 * δ * log T s 1 2 ( log χ ) σ 1 c 1 δ 13 * δ * + ( log χ ) σ 2 c 1 δ 23 * δ * + ( log χ ) σ 3 c 1 δ 33 * δ * ( log T s ) 2 1 Γ ( 2 σ 1 ) ( log χ ) σ 1 η 4 δ 11 * δ * + ( log χ ) σ 2 η 4 δ 21 * δ * + ( log χ ) σ 3 η 4 δ 31 * δ * ( log T s ) 2 σ 2 1 Γ ( 2 σ 2 ) ( log χ ) σ 1 η 5 δ 12 * δ * + ( log χ ) σ 2 η 5 δ 22 * δ * + ( log χ ) σ 3 η 5 δ 32 * δ * ( log T s ) 2 σ 3 1 Γ ( 2 σ 3 ) ( log χ ) σ 1 η 6 δ 13 * δ * + ( log χ ) σ 2 η 6 δ 23 * δ * + ( log χ ) σ 3 η 6 δ 33 * δ * ( log T s ) 2 σ 4 , 1 s < χ T , ( log χ ) σ 1 a 1 δ 11 * δ * + ( log χ ) σ 2 a 1 δ 21 * δ * + ( log χ ) σ 3 a 1 δ 31 * δ * ( log χ ) σ 1 b 1 δ 12 * δ * + ( log χ ) σ 2 b 1 δ 22 * δ * + ( log χ ) σ 3 b 1 δ 32 * δ * log T s 1 2 ( log χ ) σ 1 c 1 δ 13 * δ * + ( log χ ) σ 2 c 1 δ 23 * δ * + ( log χ ) σ 3 c 1 δ 33 * δ * ( log T s ) 2 1 Γ ( 2 σ 1 ) ( log χ ) σ 1 η 4 δ 11 * δ * + ( log χ ) σ 2 η 4 δ 21 * δ * + ( log χ ) σ 3 η 4 δ 31 * δ * ( log T s ) 2 σ 2 1 Γ ( 2 σ 2 ) ( log χ ) σ 1 η 5 δ 12 * δ * + ( log χ ) σ 2 η 5 δ 22 * δ * + ( log χ ) σ 3 η 5 δ 32 * δ * ( log T s ) 2 σ 3 1 Γ ( 2 σ 3 ) ( log χ ) σ 1 η 6 δ 13 * δ * + ( log χ ) σ 2 η 6 δ 23 * δ * + ( log χ ) σ 3 η 6 δ 33 * δ * ( log T s ) 2 σ 4 , 1 χ < s T .
Proof. 
The proof can be derived as in Lemma 2. □
For simplicity, let
R κ = max { | a 0 δ 31 log T δ | + | ( 2 a 0 δ 21 + b 0 δ 32 ) ( log T ) 2 2 δ | + ( log T ) 3 Γ ( κ ) + | ( 6 a 0 δ 11 + 3 b 0 δ 22 + c 0 δ 33 ) ( log T ) 3 6 δ | + | ( 3 b 0 δ 12 + c 0 δ 23 ) ( log T ) 4 6 δ | + | c 0 δ 13 ( log T ) 5 6 δ | + | η 1 δ 11 ( log T ) 2 κ + 1 δ Γ ( 2 κ ) | + | ( η 1 δ 21 + ( 2 κ 1 ) η 2 δ 12 ) ( log T ) 2 κ δ Γ ( 2 κ ) | + | ( η 1 δ 31 + ( 2 κ 1 ) η 2 δ 22 + ( 2 κ 1 ) ( 2 κ 2 ) η 3 δ 13 ) ( log T ) 2 κ 1 δ Γ ( 2 κ ) | + | ( η 2 δ 32 + ( 2 κ 2 ) η 3 δ 23 ) ( log T ) 2 κ 2 δ Γ ( 2 κ 1 ) | + | η 3 δ 33 ( log T ) 2 κ 3 δ Γ ( 2 κ 2 ) | }
and
R σ = max { | a 1 δ 31 * log T δ * | + | ( 2 a 1 δ 21 * + b 1 δ 32 * ) ( log T ) 2 2 δ * | + ( log T ) 3 Γ ( σ ) + | ( 6 a 1 δ 11 * + 3 b 1 δ 22 * + c 1 δ 33 * ) ( log T ) 3 6 δ * | + | ( 3 b 1 δ 12 * + c 1 δ 23 * ) ( log T ) 4 6 δ * | + | c 1 δ 13 * ( log T ) 5 6 δ * | + | η 4 δ 11 * ( log T ) 2 σ + 1 δ * Γ ( 2 σ ) | + | ( η 4 δ 21 * + ( 2 σ 1 ) η 5 δ 12 * ) ( log T ) 2 σ δ * Γ ( 2 σ ) | + | ( η 4 δ 31 * + ( 2 σ 1 ) η 5 δ 22 * + ( 2 σ 1 ) ( 2 σ 2 ) η 6 δ 13 * ) ( log T ) 2 σ 1 δ * Γ ( 2 σ ) | + | ( η 5 δ 32 * + ( 2 σ 2 ) η 6 δ 23 * ) ( log T ) 2 σ 2 δ * Γ ( 2 σ 1 ) | + | η 6 δ 33 * ( log T ) 2 σ 3 δ * Γ ( 2 σ 2 ) | } .
By letting v , w be the solutions to Equation (1) and χ M , then
v ( χ ) = 1 Γ ( κ ) 1 χ ( log χ s ) κ 1 μ ( s , w ( s ) , H D κ v ( s ) ) ds s a 0 δ 11 ( log χ ) κ 1 δ + a 0 δ 21 ( log χ ) κ 2 δ + a 0 δ 31 ( log χ ) κ 3 δ 1 T μ ( s , w ( s ) , H D κ v ( s ) ) ds s b 0 δ 12 ( log χ ) κ 1 δ + b 0 δ 22 ( log χ ) κ 2 δ + b 0 δ 32 ( log χ ) κ 3 δ 1 T log T s μ ( s , w ( s ) , H D κ v ( s ) ) ds s c 0 δ 13 ( log χ ) κ 1 2 δ + c 0 δ 23 ( log χ ) κ 2 2 δ + c 0 δ 33 ( log χ ) κ 3 2 δ 1 T ( log T s ) 2 μ ( s , w ( s ) , H D κ v ( s ) ) ds s η 1 δ 11 ( log χ ) κ 1 δ Γ ( 2 κ 1 ) + η 1 δ 21 ( log χ ) κ 2 δ Γ ( 2 κ 1 ) + η 1 δ 31 ( log χ ) κ 3 δ Γ ( 2 κ 1 ) 1 T ( log T s ) 2 κ 2 μ ( s , w ( s ) , H D κ v ( s ) ) ds s η 2 δ 12 ( log χ ) κ 1 δ Γ ( 2 κ 2 ) + η 2 δ 22 ( log χ ) κ 2 δ Γ ( 2 κ 2 ) + η 2 δ 32 ( log χ ) κ 3 δ Γ ( 2 κ 2 ) 1 T ( log T s ) 2 κ 3 μ ( s , w ( s ) , H D κ v ( s ) ) ds s η 3 δ 13 ( log χ ) κ 1 δ Γ ( 2 κ 3 ) + η 3 δ 23 ( log χ ) κ 2 δ Γ ( 2 κ 3 ) + η 3 δ 33 ( log χ ) κ 3 δ Γ ( 2 κ 3 ) 1 T ( log T s ) 2 κ 4 μ ( s , w ( s ) , H D κ v ( s ) ) ds s = 1 T G κ ( χ , s ) μ ( s , w ( s ) , H D κ v ( s ) ) ds s
and
w ( χ ) = 1 Γ ( σ ) 1 χ ( log χ s ) σ 1 ν ( s , v ( s ) , H D σ w ( s ) ) ds s a 1 δ 11 * ( log χ ) σ 1 δ * + a 1 δ 21 * ( log χ ) σ 2 δ * + a 1 δ 31 * ( log χ ) σ 3 δ * 1 T ν ( s , ν ( s ) , H D σ w ( s ) ) ds s b 1 δ 12 * ( log χ ) σ 1 δ * + b 1 δ 22 * ( log χ ) σ 2 δ * + b 1 δ 32 * ( log χ ) σ 3 δ * 1 T log T s ν ( s , v ( s ) , H D σ w ( s ) ) ds s c 1 δ 13 * ( log χ ) σ 1 2 δ * + c 1 δ 23 * ( log χ ) σ 2 2 δ * + c 1 δ 33 * ( log χ ) σ 3 2 δ * 1 T ( log T s ) 2 ν ( s , v ( s ) , H D σ w ( s ) ) ds s η 4 δ 11 * ( log χ ) σ 1 δ * Γ ( 2 σ 1 ) + η 4 δ 21 * ( log χ ) σ 2 δ * Γ ( 2 σ 1 ) + η 4 δ 31 * ( log χ ) σ 3 δ * Γ ( 2 σ 1 ) 1 T ( log T s ) 2 σ 2 ν ( s , v ( s ) , H D σ w ( s ) ) ds s η 5 δ 12 * ( log χ ) σ 1 δ * Γ ( 2 σ 2 ) + η 5 δ 22 * ( log χ ) σ 2 δ * Γ ( 2 σ 2 ) + η 5 δ 32 * ( log χ ) σ 3 δ * Γ ( 2 σ 2 ) 1 T ( log T s ) 2 σ 3 ν ( s , v ( s ) , H D σ w ( s ) ) ds s η 6 δ 13 * ( log χ ) σ 1 δ * Γ ( 2 σ 3 ) + η 6 δ 23 * ( log χ ) σ 2 δ * Γ ( 2 σ 3 ) + η 6 δ 33 * ( log χ ) σ 3 δ * Γ ( 2 σ 3 ) 1 T ( log T s ) 2 σ 4 ν ( s , v ( s ) , H D σ w ( s ) ) ds s = 1 T G σ ( χ , s ) ν ( s , v ( s ) , H D σ w ( s ) ) ds s .
For simplicity, we have
u ( χ ) = μ ( χ , w ( χ ) , D κ v ( χ ) ) = μ ( χ , w ( χ ) , u ( χ ) ) , x ( χ ) = ν ( χ , v ( χ ) , D σ w ( χ ) ) = ν ( χ , v ( χ ) , x ( χ ) ) .
To deal with Equation (1) as a problem of a fixed point, let U : W × W W × W be an operator represented by
U ( v , w ) ( χ ) = 1 T G κ ( χ , s ) μ ( s , w ( s ) , u ( s ) ) d s 1 T G σ ( χ , s ) ν ( s , v ( s ) , x ( s ) ) d s = U κ ( w , u ) ( χ ) U σ ( v , x ) ( χ ) = U κ ( v ) ( χ ) U σ ( w ) ( χ ) .
Then, obviously, the solution to Equation (1) is the fixed point of U , where
U κ ( v ) ( χ ) = 1 Γ ( κ ) 1 χ ( log χ s ) κ 1 u ( s ) ds s a 0 δ 11 ( log χ ) κ 1 δ + a 0 δ 21 ( log χ ) κ 2 δ + a 0 δ 31 ( log χ ) κ 3 δ 1 T u ( s ) ds s b 0 δ 12 ( log χ ) κ 1 δ + b 0 δ 22 ( log χ ) κ 2 δ + b 0 δ 32 ( log χ ) κ 3 δ 1 T log T s u ( s ) ds s c 0 δ 13 ( log χ ) κ 1 2 δ + c 0 δ 23 ( log χ ) κ 2 2 δ + c 0 δ 33 ( log χ ) κ 3 2 δ 1 T ( log T s ) 2 u ( s ) ds s η 1 δ 11 ( log χ ) κ 1 δ Γ ( 2 κ 1 ) + η 1 δ 21 ( log χ ) κ 2 δ Γ ( 2 κ 1 ) + η 1 δ 31 ( log χ ) κ 3 δ Γ ( 2 κ 1 ) 1 T ( log T s ) 2 κ 2 u ( s ) ds s η 2 δ 12 ( log χ ) κ 1 δ Γ ( 2 κ 2 ) + η 2 δ 22 ( log χ ) κ 2 δ Γ ( 2 κ 2 ) + η 2 δ 32 ( log χ ) κ 3 δ Γ ( 2 κ 2 ) 1 T ( log T s ) 2 κ 3 u ( s ) ds s η 3 δ 13 ( log χ ) κ 1 δ Γ ( 2 κ 3 ) + η 3 δ 23 ( log χ ) κ 2 δ Γ ( 2 κ 3 ) + η 3 δ 33 ( log χ ) κ 3 δ Γ ( 2 κ 3 ) 1 T ( log T s ) 2 κ 4 u ( s ) ds s = 1 T G κ ( χ , s ) u ( s ) ds s
and
U σ ( w ) ( χ ) = 1 Γ ( σ ) 1 χ ( log χ s ) σ 1 x ( s ) ds s a 1 δ 11 * ( log χ ) σ 1 δ * + a 1 δ 21 * ( log χ ) σ 2 δ * + a 1 δ 31 * ( log χ ) σ 3 δ * 1 T x ( s ) ds s b 1 δ 12 * ( log χ ) σ 1 δ * + b 1 δ 22 * ( log χ ) σ 2 δ * + b 1 δ 32 * ( log χ ) σ 3 δ * 1 T log T s x ( s ) ds s c 1 δ 13 * ( log χ ) σ 1 2 δ * + c 1 δ 23 * ( log χ ) σ 2 2 δ * + c 1 δ 33 * ( log χ ) σ 3 2 δ * 1 T ( log T s ) 2 x ( s ) ds s η 4 δ 11 * ( log χ ) σ 1 δ * Γ ( 2 σ 1 ) + η 4 δ 21 * ( log χ ) σ 2 δ * Γ ( 2 σ 1 ) + η 4 δ 31 * ( log χ ) σ 3 δ * Γ ( 2 σ 1 ) 1 T ( log T s ) 2 σ 2 x ( s ) ds s η 5 δ 12 * ( log χ ) σ 1 δ * Γ ( 2 σ 2 ) + η 5 δ 22 * ( log χ ) σ 2 δ * Γ ( 2 σ 2 ) + η 5 δ 32 * ( log χ ) σ 3 δ * Γ ( 2 σ 2 ) 1 T ( log T s ) 2 σ 3 x ( s ) ds s η 6 δ 13 * ( log χ ) σ 1 δ * Γ ( 2 σ 3 ) + η 6 δ 23 * ( log χ ) σ 2 δ * Γ ( 2 σ 3 ) + η 6 δ 33 * ( log χ ) σ 3 δ * Γ ( 2 σ 3 ) 1 T ( log T s ) 2 σ 4 x ( s ) ds s = 1 T G σ ( χ , s ) x ( s ) ds s .
In the coming section, we utilize the Banach principle to obtain our first result:
Theorem 1.
Let μ , ν : M × R 2 R be continuous such that the following condition holds true:
[ H 1 ] For every χ M and w , v , u , x , w ¯ , v ¯ , x ¯ , u ¯ : W R , there are L μ , L ν > 0 and 0 L ¯ μ , L ¯ ν < 1 such that
| μ ( χ , w ( χ ) , u ( χ ) ) μ ( χ , w ¯ ( χ ) , u ¯ ( χ ) ) | L μ | w ( χ ) w ¯ ( χ ) | + L ¯ μ | u ( χ ) u ¯ ( χ ) | ,
| ν ( χ , v ( χ ) , x ( χ ) ) ν ( χ , v ¯ ( χ ) , x ¯ ( χ ) ) | L ν | v ( χ ) v ¯ ( χ ) | + L ¯ ν | x ( χ ) x ¯ ( χ ) | .
Furthermore, suppose that
R κ L μ ( 1 L ¯ ν ) + R σ L ν ( 1 L ¯ μ ) ( 1 L ¯ ν ) ( 1 L ¯ μ ) < 1 ,
where R κ and R σ are presented in Equations (8) and (9), respectively. Then, Equation (1) has a (unique) solution.
Proof. 
Let sup χ M μ ( χ , 0 , 0 ) = Φ * < and sup χ M ν ( χ , 0 , 0 ) = Ψ * < such that
r 2 R κ Φ * ( 1 L ¯ ν ) + 2 R σ Ψ * ( 1 L ¯ μ ) 2 ( 1 L ¯ μ ) ( 1 L ¯ ν ) R κ L μ R σ L ν .
We need to prove that U ( B r ) B r , where
B r = ( v , w ) W × W : ( v , w ) W × W r , v W r 2 , w W r 2 .
For ( v , w ) B r , we have
( log χ ) 3 κ | U κ ( v ) ( χ ) | ( log χ ) 3 κ Γ ( κ ) 1 χ ( log χ s ) κ 1 [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s + | a 0 δ 11 ( log χ ) 2 δ + a 0 δ 21 log ( χ ) δ + a 0 δ 31 δ | 1 T [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s + | b 0 δ 12 ( log χ ) 2 δ + b 0 δ 22 log ( χ ) δ + b 0 δ 32 δ | 1 T log T s [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s + | c 0 δ 13 ( log χ ) 2 2 δ + c 0 δ 23 log ( χ ) 2 δ + c 0 δ 33 2 δ | 1 T ( log T s ) 2 [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s + | η 1 δ 11 ( log χ ) 2 δ Γ ( 2 κ 1 ) + η 1 δ 21 log ( χ ) δ Γ ( 2 κ 1 ) + η 1 δ 31 δ Γ ( 2 κ 1 ) | × 1 T ( log T s ) 2 κ 2 [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s + | η 2 δ 12 ( log χ ) 2 δ Γ ( 2 κ 2 ) + η 2 δ 22 log ( χ ) δ Γ ( 2 κ 2 ) + η 2 δ 32 δ Γ ( 2 κ 2 ) | 1 T ( log T s ) 2 κ 3 [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s + | η 3 δ 13 ( log χ ) 2 δ Γ ( 2 κ 3 ) + η 3 δ 23 log ( χ ) δ Γ ( 2 κ 3 ) + η 3 δ 33 δ Γ ( 2 κ 3 ) | 1 T ( log T s ) 2 κ 4 [ | μ ( s , w ( s ) , u ( s ) ) μ ( 0 , 0 , 0 ) | + | μ ( 0 , 0 , 0 ) | ] ds s .
Consider
| u ( χ ) | | μ ( χ , w ( χ ) , u ( χ ) ) μ ( χ , 0 , 0 ) | + | μ ( χ , 0 , 0 ) | | μ ( χ , 0 , 0 ) | + L μ | w ( χ ) | + L ¯ μ | u ( χ ) | | μ ( χ , 0 , 0 ) | + L μ | w ( χ ) | 1 L ¯ μ .
By substituting Equation (12) into Equation (11), we obtain
U κ ( v ) W [ | a 0 δ 31 log T δ | + | ( 2 a 0 δ 21 + b 0 δ 32 ) ( log T ) 2 2 δ | + | ( 6 a 0 δ 11 + 3 b 0 δ 22 + c 0 δ 33 ) ( log T ) 3 6 δ | + | ( 3 b 0 δ 12 + c 0 δ 23 ) ( log T ) 4 6 δ | + | c 0 δ 13 ( log T ) 5 6 δ | + ( log T ) 3 Γ ( κ ) + | η 1 δ 11 ( log T ) 2 κ + 1 δ Γ ( 2 κ ) | + | ( η 1 δ 31 + ( 2 κ 1 ) η 2 δ 22 + ( 2 κ 1 ) ( 2 κ 2 ) η 3 δ 13 ) ( log T ) 2 κ 1 δ Γ ( 2 κ ) | + | η 3 δ 33 ( log T ) 2 κ 3 δ Γ ( 2 κ 2 ) | + | ( η 1 δ 21 + ( 2 κ 1 ) η 2 δ 12 ) ( log T ) 2 κ δ Γ ( 2 κ ) | + | ( η 2 δ 32 + ( 2 κ 2 ) η 3 δ 23 ) ( log T ) 2 κ 2 δ Γ ( 2 κ 1 ) | ] 2 Φ * + L μ r 2 ( 1 L ¯ μ ) .
Hence, we have
U κ ( v ) W R κ 2 Φ * + L μ r 2 ( 1 L ¯ μ ) .
Equivalently, we have
U σ ( w ) W R σ 2 Ψ * + L ν r 2 ( 1 L ¯ ν ) .
Equations (13) and (14) imply that
U ( v , w ) W × W r .
For ( v 1 , w 1 ) , ( v 2 , w 2 ) W × W and for any χ M , we obtain
( log χ ) 3 κ | U κ ( v 1 ) ( χ ) U κ ( v 2 ) ( χ ) | ( log χ ) 3 κ Γ ( κ ) 1 χ ( log χ s ) κ 1 | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s + | a 0 δ 11 ( log χ ) 2 δ + a 0 δ 21 log ( χ ) δ + a 0 δ 31 δ | 1 T | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s + | b 0 δ 12 ( log χ ) 2 δ + b 0 δ 22 log ( χ ) δ + b 0 δ 32 δ | 1 T log T s | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s + | c 0 δ 13 ( log χ ) 2 2 δ + c 0 δ 23 log ( χ ) 2 δ + c 0 δ 33 2 δ | 1 T ( log T s ) 2 | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s + | η 1 δ 31 δ Γ ( 2 κ 1 ) + η 1 δ 21 log ( χ ) δ Γ ( 2 κ 1 ) + η 1 δ 11 ( log χ ) 2 δ Γ ( 2 κ 1 ) | 1 T ( log T s ) 2 κ 2 | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s + | η 2 δ 12 ( log χ ) 2 δ Γ ( 2 κ 2 ) + η 2 δ 22 log ( χ ) δ Γ ( 2 κ 2 ) + η 2 δ 32 δ Γ ( 2 κ 2 ) | × 1 T ( log T s ) 2 κ 3 | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s + | η 3 δ 13 ( log χ ) 2 δ Γ ( 2 κ 3 ) + η 3 δ 23 log ( χ ) δ Γ ( 2 κ 3 ) + η 3 δ 33 δ Γ ( 2 κ 3 ) | 1 T ( log T s ) 2 κ 4 | μ ( s , w 1 ( s ) , u 1 ( s ) ) μ ( s , w 2 ( s ) , u 2 ( s ) ) | ds s [ | a 0 δ 31 log T δ | + | ( 2 a 0 δ 21 + b 0 δ 32 ) ( log T ) 2 2 δ | + | ( 6 a 0 δ 11 + 3 b 0 δ 22 + c 0 δ 33 ) ( log T ) 3 6 δ | + | ( 3 b 0 δ 12 + c 0 δ 23 ) ( log T ) 4 6 δ | + | c 0 δ 13 ( log T ) 5 6 δ | + ( log T ) 3 Γ ( κ ) + | η 1 δ 11 ( log T ) 2 κ + 1 δ Γ ( 2 κ ) | + | ( η 1 δ 31 + ( 2 κ 1 ) η 2 δ 22 + ( 2 κ 1 ) ( 2 κ 2 ) η 3 δ 13 ) ( log T ) 2 κ 1 δ Γ ( 2 κ ) | + | η 3 δ 33 ( log T ) 2 κ 3 δ Γ ( 2 κ 2 ) | + | ( η 1 δ 21 + ( 2 κ 1 ) η 2 δ 12 ) ( log T ) 2 κ δ Γ ( 2 κ ) | + | ( η 2 δ 32 + ( 2 κ 2 ) η 3 δ 23 ) ( log T ) 2 κ 2 δ Γ ( 2 κ 1 ) | ] L μ 1 L ¯ μ w 1 w 2 W
Hence, we have
U κ ( v 1 ) U κ ( v 2 ) W R κ L μ 1 L ¯ μ w 1 w 2 W .
Similarly, we have
U σ ( w 1 ) U σ ( w 2 ) W R σ L ν 1 L ¯ ν v 1 v 2 W .
Equations (15) and (16) imply that
U ( v 1 , w 1 ) U ( v 2 , w 2 ) W × W R κ L μ ( 1 L ¯ ν ) + R σ L ν ( 1 L ¯ μ ) ( 1 L ¯ ν ) ( 1 L ¯ μ ) ( v 1 , w 1 ) ( v 2 , w 2 ) W × W .
Therefore, U is a contraction. Thus, Equation (1) has a (unique) solution. □
In the sequel, we need the following theorem:
Theorem 2
([36]). Let U : W W be a completely continuous operator, and let
B ( U ) = v W : v = λ U ( v ) , λ [ 0 , 1 ] .
Then either the set B ( U ) is unbounded or the operator U has at least one fixed point.
Theorem 3.
Suppose the functions μ , ν : M × R × R R are continuous such that the following are true:
[ H 2 ] For any χ M and w , u : M R , ∃ ϕ i ( i = 1 , 2 , 3 ) : M R , they satisfy
| μ ( χ , w ( χ ) , u ( χ ) ) | ϕ 1 ( χ ) + ϕ 2 ( χ ) | w ( χ ) | + ϕ 3 ( χ ) | u ( χ ) | .
In addition, for χ M and v , x : M R , ∃ φ i ( i = 1 , 2 , 3 ) : M R , they satisfy
| ν ( χ , v ( χ ) , x ( χ ) ) | φ 1 ( χ ) + φ 2 ( χ ) | v ( χ ) | + φ 3 ( χ ) | x ( χ ) | ,
with sup χ M ϕ i ( χ ) = ϕ i * , sup χ M φ i ( χ ) = φ i * ( i = 1 , 2 , 3 ) .
Furthermore, the following is true:
R 0 = max R σ φ 2 * 1 φ 3 * , R κ ϕ 2 * 1 ϕ 3 * < 1 and 0 ϕ 3 * , φ 3 * < 1 .
Then, Equation (1) has at least one solution.
Proof. 
First, we prove that U is completely continuous. As μ and ν are continuous, the operator U is thus also continuous. Now, for ( v , w ) B r , we obtain
( log χ ) 3 κ | U κ ( v ) ( χ ) | ( log χ ) 3 κ Γ ( κ ) 1 χ ( log χ s ) κ 1 | u ( s ) | ds s + | a 0 δ 11 ( log χ ) 2 δ + a 0 δ 21 log ( χ ) δ + a 0 δ 31 δ | 1 T | u ( s ) | ds s + | b 0 δ 12 ( log χ ) 2 δ + b 0 δ 22 log ( χ ) δ + b 0 δ 32 δ | 1 T log T s | u ( s ) | ds s + | c 0 δ 13 ( log χ ) 2 2 δ + c 0 δ 23 log ( χ ) 2 δ + c 0 δ 33 2 δ | 1 T ( log T s ) 2 | u ( s ) | ds s + | η 1 δ 11 ( log χ ) 2 δ Γ ( 2 κ 1 ) + η 1 δ 21 log ( χ ) δ Γ ( 2 κ 1 ) + η 1 δ 31 δ Γ ( 2 κ 1 ) | 1 T ( log T s ) 2 κ 2 | u ( s ) | ds s + | η 2 δ 12 ( log χ ) 2 δ Γ ( 2 κ 2 ) + η 2 δ 22 log ( χ ) δ Γ ( 2 κ 2 ) + η 2 δ 32 δ Γ ( 2 κ 2 ) | 1 T ( log T s ) 2 κ 3 | u ( s ) | ds s + | η 3 δ 13 ( log χ ) 2 δ Γ ( 2 κ 3 ) + η 3 δ 23 log ( χ ) δ Γ ( 2 κ 3 ) + η 3 δ 33 δ Γ ( 2 κ 3 ) | 1 T ( log T s ) 2 κ 4 | u ( s ) | ds s .
By applying [ H 2 ] , we have
| u ( χ ) | = | μ ( χ , w ( χ ) , u ( χ ) ) | ϕ 1 ( χ ) + ϕ 2 ( χ ) | w ( χ ) | + ϕ 3 ( χ ) | u ( χ ) | ϕ 1 ( χ ) + ϕ 2 ( χ ) | w ( χ ) | 1 ϕ 3 ( χ ) .
Thus, from Equation (18), we have
U κ ( v ) W [ | a 0 δ 31 log T δ | + | ( 2 a 0 δ 21 + b 0 δ 32 ) ( log T ) 2 2 δ | + | ( 6 a 0 δ 11 + 3 b 0 δ 22 + c 0 δ 33 ) ( log T ) 3 6 δ | + | ( 3 b 0 δ 12 + c 0 δ 23 ) ( log T ) 4 6 δ | + | c 0 δ 13 ( log T ) 5 6 δ | + ( log T ) 3 Γ ( κ ) + | η 1 δ 11 ( log T ) 2 κ + 1 δ Γ ( 2 κ ) | + | ( η 1 δ 31 + ( 2 κ 1 ) η 2 δ 22 + ( 2 κ 1 ) ( 2 κ 2 ) η 3 δ 13 ) ( log T ) 2 κ 1 δ Γ ( 2 κ ) | + | η 3 δ 33 ( log T ) 2 κ 3 δ Γ ( 2 κ 2 ) | + | ( η 1 δ 21 + ( 2 κ 1 ) η 2 δ 12 ) ( log T ) 2 κ δ Γ ( 2 κ ) | + | ( η 2 δ 32 + ( 2 κ 2 ) η 3 δ 23 ) ( log T ) 2 κ 2 δ Γ ( 2 κ 1 ) | ] 2 ϕ 1 * + ϕ 2 * r 2 ( 1 ϕ 3 * ) ,
which implies that
U κ ( v ) W R κ 2 ϕ 1 * + ϕ 2 * r 2 ( 1 ϕ 3 * ) .
Similarly, we obtain
U σ ( w ) W R σ 2 φ 1 * + φ 2 * r 2 ( 1 φ 3 * ) .
Therefore, Equations (20) and (21) imply that U is uniformly bounded.
To prove that U is equicontinuous, let 0 χ 2 χ 1 χ . Then, we have
| ( log χ 1 ) 3 κ U κ ( v ) ( χ 1 ) ( log χ 2 ) 3 κ U κ ( v ) ( χ 2 ) | | 1 Γ ( κ ) 1 χ 1 ( log χ 1 ) 3 κ ( log χ 1 s ) κ 1 ( log χ 2 ) 3 κ ( log χ 2 s ) κ 1 u ( s ) ds s 1 Γ ( κ ) χ 1 χ 2 ( log χ 2 ) 3 κ ( log χ 2 s ) κ 1 u ( s ) ds s | + | a 0 δ 11 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ + a 0 δ 21 [ log ( χ 1 ) log ( χ 2 ) ] δ | 1 T | u ( s ) | ds s + | b 0 δ 12 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ + b 0 δ 22 [ log ( χ 1 ) log ( χ 2 ) ] δ | 1 T log T s | u ( s ) | ds s + | c 0 δ 13 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] 2 δ + c 0 δ 23 [ log ( χ 1 ) log ( χ 2 ) ] 2 δ | 1 T ( log T s ) 2 | u ( s ) | ds s + | η 1 δ 11 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ Γ ( 2 κ 1 ) + η 1 δ 21 [ log ( χ 1 ) log ( χ 2 ) ] δ Γ ( 2 κ 1 ) | 1 T ( log T s ) 2 κ 2 | u ( s ) | ds s + | η 2 δ 12 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ Γ ( 2 κ 2 ) + η 2 δ 22 [ log ( χ 1 ) log ( χ 2 ) ] δ Γ ( 2 κ 2 ) | 1 T ( log T s ) 2 κ 3 | u ( s ) | ds s + | η 3 δ 13 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ Γ ( 2 κ 3 ) + η 3 δ 23 [ log ( χ 1 ) log ( χ 2 ) ] δ Γ ( 2 κ 3 ) | 1 T ( log T s ) 2 κ 4 | u ( s ) | ds s .
Therefore, we obtain
| ( log χ 1 ) 3 κ U κ ( v ) ( χ 1 ) ( log χ 2 ) 3 κ U κ ( v ) ( χ 2 ) | [ | 1 Γ ( κ ) 1 χ 1 ( log χ 1 ) 3 κ ( log χ 1 s ) κ 1 ( log χ 2 ) 3 κ ( log χ 2 s ) κ 1 ds s 1 Γ ( κ ) χ 1 χ 2 ( log χ 2 ) 3 κ ( log χ 2 s ) κ 1 ds s | + | a 0 δ 11 log T [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ | + | a 0 δ 21 log T [ log ( χ 1 ) log ( χ 2 ) ] δ | + | b 0 δ 12 ( log T ) 2 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] 2 δ | + | b 0 δ 22 ( log T ) 2 [ log ( χ 1 ) log ( χ 2 ) ] 2 δ | + | c 0 δ 13 ( log T ) 3 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] 6 δ | + | c 0 δ 23 ( log T ) 3 [ log ( χ 1 ) log ( χ 2 ) ] 6 δ | + | η 1 δ 11 ( log T ) 2 κ 1 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ Γ ( 2 κ ) | + | η 1 δ 21 ( log T ) 2 κ 1 [ log ( χ 1 ) log ( χ 2 ) ] δ Γ ( 2 κ ) | + | η 2 δ 12 ( log T ) 2 κ 2 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ Γ ( 2 κ 1 ) | + | η 2 δ 22 ( log T ) 2 κ 2 [ log ( χ 1 ) log ( χ 2 ) ] δ Γ ( 2 κ 1 ) | + | η 3 δ 13 ( log T ) 2 κ 3 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ Γ ( 2 κ 2 ) | + | η 3 δ 23 ( log T ) 2 κ 3 [ log ( χ 1 ) log ( χ 2 ) ] δ Γ ( 2 κ 2 ) | ] ϕ 1 * + ϕ 2 * | w | 1 ϕ 3 * 0 as χ 1 χ 2 .
Similarly, we have
| ( log χ 1 ) 3 σ U σ ( w ) ( χ 1 ) ( log χ 2 ) 3 σ U σ ( w ) ( χ 2 ) | [ | 1 Γ ( σ ) 1 χ 1 ( log χ 1 ) 3 σ ( log χ 1 s ) σ 1 ( log χ 2 ) 3 σ ( log χ 2 s ) σ 1 ds s 1 Γ ( σ ) χ 1 χ 2 ( log χ 2 ) 3 σ ( log χ 2 s ) σ 1 ds s | + | a 1 δ 11 * log T [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ * | + | a 1 δ 21 * log T [ log ( χ 1 ) log ( χ 2 ) ] δ * | + | b 1 δ 12 * ( log T ) 2 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] 2 δ * | + | b 1 δ 22 * ( log T ) 2 [ log ( χ 1 ) log ( χ 2 ) ] 2 δ * | + | c 1 δ 13 * ( log T ) 3 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] 6 δ * | + | c 1 δ 23 * ( log T ) 3 [ log ( χ 1 ) log ( χ 2 ) ] 6 δ * | + | η 4 δ 11 * ( log T ) 2 σ 1 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ * Γ ( 2 σ ) | + | η 4 δ 21 * ( log T ) 2 σ 1 [ log ( χ 1 ) log ( χ 2 ) ] δ * Γ ( 2 σ ) | + | η 5 δ 12 * ( log T ) 2 σ 2 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ * Γ ( 2 σ 1 ) | + | η 5 δ 22 * ( log T ) 2 σ 2 [ log ( χ 1 ) log ( χ 2 ) ] δ * Γ ( 2 σ 1 ) | + | η 6 δ 13 * ( log T ) 2 σ 3 [ ( log χ 1 ) 2 ( log χ 2 ) 2 ] δ * Γ ( 2 σ 2 ) | + | η 6 δ 23 * ( log T ) 2 σ 3 [ log ( χ 1 ) log ( χ 2 ) ] δ * Γ ( 2 σ 2 ) | ] φ 1 * + φ 2 * | v | 1 φ 3 * 0 as χ 1 χ 2 .
Thus, U ( v , w ) is equicontinuous, and consequently, U ( v , w ) is completely continuous.
Now, we prove that B = ( v , w ) W × W | ( v , w ) = λ U ( v , w ) , λ [ 0 , 1 ] is bounded. Let ( v , w ) B . Then, ( v , w ) = λ U ( v , w ) . For χ M , we have
v ( χ ) = λ U κ ( v ) ( χ ) , w ( χ ) = λ U σ ( w ) ( χ ) .
Then, we have
( log χ ) 3 κ | v ( χ ) | [ | a 0 δ 31 log T δ | + | ( 2 a 0 δ 21 + b 0 δ 32 ) ( log T ) 2 2 δ | + ( log T ) 3 Γ ( κ ) + | ( 6 a 0 δ 11 + 3 b 0 δ 22 + c 0 δ 33 ) ( log T ) 3 6 δ | + | ( 3 b 0 δ 12 + c 0 δ 23 ) ( log T ) 4 6 δ | + | c 0 δ 13 ( log T ) 5 6 δ | + | η 1 δ 11 ( log T ) 2 κ + 1 δ Γ ( 2 κ ) | + | ( η 1 δ 31 + ( 2 κ 1 ) η 2 δ 22 + ( 2 κ 1 ) ( 2 κ 2 ) η 3 δ 13 ) ( log T ) 2 κ 1 δ Γ ( 2 κ ) | + | η 3 δ 33 ( log T ) 2 κ 3 δ Γ ( 2 κ 2 ) | + | ( η 1 δ 21 + ( 2 κ 1 ) η 2 δ 12 ) ( log T ) 2 κ δ Γ ( 2 κ ) | + | ( η 2 δ 32 + ( 2 κ 2 ) η 3 δ 23 ) ( log T ) 2 κ 2 δ Γ ( 2 κ 1 ) | ] ϕ 1 ( χ ) + ϕ 2 ( χ ) | w ( χ ) | 1 ϕ 3 ( χ ) ,
which implies that
v W R κ ϕ 1 * + ϕ 2 * w W 1 ϕ 3 *
In addition, we have
( log χ ) 3 σ | w ( χ ) | [ | a 1 δ 31 * log T δ * | + | ( 2 a 1 δ 21 * + b 1 δ 32 * ) ( log T ) 2 2 δ * | + ( log T ) 3 Γ ( σ ) + | ( 6 a 1 δ 11 * + 3 b 1 δ 22 * + c 1 δ 33 * ) ( log T ) 3 6 δ * | + | ( 3 b 1 δ 12 * + c 1 δ 23 * ) ( log T ) 4 6 δ * | + | c 1 δ 13 * ( log T ) 5 6 δ * | + | η 4 δ 11 * ( log T ) 2 σ + 1 δ * Γ ( 2 σ ) | + | ( η 4 δ 31 * + ( 2 σ 1 ) η 5 δ 22 * + ( 2 σ 1 ) ( 2 σ 2 ) η 6 δ 13 * ) ( log T ) 2 σ 1 δ * Γ ( 2 σ ) | + | η 6 δ 33 * ( log T ) 2 σ 3 δ * Γ ( 2 σ 2 ) | + | ( η 4 δ 21 * + ( 2 σ 1 ) η 5 δ 12 * ) ( log T ) 2 σ δ * Γ ( 2 σ ) | + | ( η 5 δ 32 * + ( 2 σ 2 ) η 6 δ 23 * ) ( log T ) 2 σ 2 δ * Γ ( 2 σ 1 ) | ] φ 1 ( χ ) + φ 2 ( χ ) | v ( χ ) | 1 φ 3 ( χ ) ,
which implies that
w W R σ φ 1 * + φ 2 * v W 1 φ 3 * .
Equations (22) and (23) imply that
v W + w W = R κ ϕ 1 * 1 ϕ 3 * + R σ φ 1 * 1 φ 3 * + R σ φ 2 * v W 1 φ 3 * + R κ ϕ 2 * w W 1 ϕ 3 * .
Thus, we have
( v , w ) W × W R κ ϕ 1 * + R σ φ 1 * ( 1 ϕ 3 * ) ( 1 φ 3 * ) ( 1 R 0 ) ,
for any χ M , where R 0 is presented in Equation (17), and thus B is bounded. Consequently, Equation (1) has at least one solution. □

4. Stability

Let us introduce the definitions of the Ulam stabilities for Equation (1).
Let Θ μ , Θ ν : M R + be nondecreasing functions and ϵ μ , ϵ ν > 0 . Additionally, let
| H D κ v ( χ ) μ ( χ , w ( χ ) , H D κ v ( χ ) ) | ϵ μ , χ M , | H D σ w ( χ ) ν ( χ , v ( χ ) , H D σ w ( χ ) ) | ϵ ν , χ M ,
| H D κ v ( χ ) μ ( χ , w ( χ ) , H D κ v ( χ ) ) | Θ μ ( χ ) ϵ μ , χ M , | H D σ w ( χ ) ν ( χ , v ( χ ) , H D σ w ( χ ) ) | Θ ν ( χ ) ϵ ν , χ M ,
| H D κ v ( χ ) μ ( χ , w ( χ ) , H D κ v ( χ ) ) | Θ μ ( χ ) , χ M , | H D σ w ( χ ) ν ( χ , v ( χ ) , H D σ w ( χ ) ) | Θ ν ( χ ) , χ M .
Definition 3
([37]). Equation (1) has HUS if C μ , ν = ( C μ , C ν ) > 0 such that for some ϵ = ( ϵ μ , ϵ ν ) > 0 and for any ( v , w ) W × W satisfying Equation (24),a solution ( ω , υ ) W × W to Equation (1) with
| ( v , w ) ( χ ) ( ω , υ ) ( χ ) | C μ , ν ϵ , χ M .
Definition 4
([37]). Equation (1) has generalized HUS if Φ μ , ν N ( R + , R + ) with Φ μ , ν ( 0 ) = 0 such that for any ( v , w ) W × W satisfying Equation (24),a solution ( ω , υ ) W × W to Equation (1) satisfying
| ( v , w ) ( χ ) ( ω , υ ) ( χ ) | Φ μ , ν ( ϵ ) , χ M .
Definition 5
([37]). Equation (1) has HURS corresponding to Θ μ , ν = ( Θ μ , Θ ν ) N ( M , R ) ifconstants C Θ μ , Θ ν = ( C Θ μ , C Θ ν ) > 0 such that for some ϵ = ( ϵ μ , ϵ ν ) > 0 and for any ( v , w ) W × W satisfying Equation (25),a solution ( ω , υ ) W × W with
| ( v , w ) ( χ ) ( ω , υ ) ( χ ) | C Θ μ , Θ ν Θ μ , ν ( χ ) ϵ , χ M .
Definition 6
([37]). Equation (1) has generalized HURS with respect to Θ μ , ν = ( Θ μ , Θ ν ) N ( M , R ) ifa constant C Θ μ , Θ ν = ( C Θ μ , C Θ ν ) > 0 such that for any ( v , w ) W × W satisfying Equation (26),a solution ( ω , υ ) W × W to Equation (1) satisfying
| ( v , w ) ( χ ) ( ω , υ ) ( χ ) | C Θ μ , Θ ν Θ μ , ν ( χ ) , χ M .
Remark 3.
Note that ( v , w ) W × W is a solution to Equation (24) if Ψ μ , Ψ ν N ( M , R ) , which depend on v and w respectively, in such a way that the following are true:
(A1)
| Ψ μ ( χ ) | ϵ μ , | Ψ ν ( χ ) | ϵ ν , χ M ;
(A2)
H D κ v ( χ ) = μ ( χ , w ( χ ) , H D κ v ( χ ) ) + Ψ μ ( χ ) , χ M , H D σ w ( χ ) = ν ( χ , v ( χ ) , H D σ w ( χ ) ) + Ψ ν ( χ ) , χ M .
Lemma 4.
Let ( v , w ) W × W be a solution to Equation (24). Then, we have
v m 1 W R κ ϵ μ , χ M , w m 2 W R σ ϵ ν , χ M .
Proof. 
By applying ( A 2 ) of Remark 3 and letting χ M , then we obtain
H D κ v ( χ ) μ ( χ , w ( χ ) , H D κ v ( χ ) ) = Ψ μ ( χ ) ; χ M , H D σ w ( χ ) ν ( χ , v ( χ ) , H D σ w ( χ ) ) = Ψ ν ( χ ) ; χ M ,
with the generalized integro-differential BCs in Equation (2). Thus, utilizing Lemma 1, the solution to Equation (31) is
v ( χ ) = 1 Γ ( κ ) 1 χ ( log χ s ) κ 1 [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s a 0 δ 11 ( log χ ) κ 1 δ + a 0 δ 21 ( log χ ) κ 2 δ + a 0 δ 31 ( log χ ) κ 3 δ 1 T [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s b 0 δ 12 ( log χ ) κ 1 δ + b 0 δ 22 ( log χ ) κ 2 δ + b 0 δ 32 ( log χ ) κ 3 δ 1 T log T s [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s c 0 δ 13 ( log χ ) κ 1 2 δ + c 0 δ 23 ( log χ ) κ 2 2 δ + c 0 δ 33 ( log χ ) κ 3 2 δ 1 T ( log T s ) 2 [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s η 1 δ 11 ( log χ ) κ 1 δ Γ ( 2 κ 1 ) + η 1 δ 21 ( log χ ) κ 2 δ Γ ( 2 κ 1 ) + η 1 δ 31 ( log χ ) κ 3 δ Γ ( 2 κ 1 ) 1 T ( log T s ) 2 κ 2 [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s η 2 δ 12 ( log χ ) κ 1 δ Γ ( 2 κ 2 ) + η 2 δ 22 ( log χ ) κ 2 δ Γ ( 2 κ 2 ) + η 2 δ 32 ( log χ ) κ 3 δ Γ ( 2 κ 2 ) 1 T ( log T s ) 2 κ 3 [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s η 3 δ 13 ( log χ ) κ 1 δ Γ ( 2 κ 3 ) + η 3 δ 23 ( log χ ) κ 2 δ Γ ( 2 κ 3 ) + η 3 δ 33 ( log χ ) κ 3 δ Γ ( 2 κ 3 ) 1 T ( log T s ) 2 κ 4 [ μ ( s , w ( s ) , H D κ v ( s ) ) + Ψ μ ( s ) ] ds s , w ( χ ) = 1 Γ ( σ ) 1 χ ( log χ s ) σ 1 [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s a 1 δ 11 * ( log χ ) σ 1 δ * + a 1 δ 21 * ( log χ ) σ 2 δ * + a 1 δ 31 * ( log χ ) σ 3 δ * 1 T [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s b 1 δ 12 * ( log χ ) σ 1 δ * + b 1 δ 22 * ( log χ ) σ 2 δ * + b 1 δ 32 * ( log χ ) σ 3 δ * 1 T log T s [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s c 1 δ 13 * ( log χ ) σ 1 2 δ * + c 1 δ 23 * ( log χ ) σ 2 2 δ * + c 1 δ 33 * ( log χ ) σ 3 2 δ * 1 T ( log T s ) 2 [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s η 4 δ 11 * ( log χ ) σ 1 δ * Γ ( 2 σ 1 ) + η 4 δ 21 * ( log χ ) σ 2 δ * Γ ( 2 σ 1 ) + η 4 δ 31 * ( log χ ) σ 3 δ * Γ ( 2 σ 1 ) 1 T ( log T s ) 2 σ 2 [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s η 5 δ 12 * ( log χ ) σ 1 δ * Γ ( 2 σ 2 ) + η 5 δ 22 * ( log χ ) σ 2 δ * Γ ( 2 σ 2 ) + η 5 δ 32 * ( log χ ) σ 3 δ * Γ ( 2 σ 2 ) 1 T ( log T s ) 2 σ 3 [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s η 6 δ 13 * ( log χ ) σ 1 δ * Γ ( 2 σ 3 ) + η 6 δ 23 * ( log χ ) σ 2 δ * Γ ( 2 σ 3 ) + η 6 δ 33 * ( log χ ) σ 3 δ * Γ ( 2 σ 3 ) 1 T ( log T s ) 2 σ 4 [ ν ( s , v ( s ) , H D σ w ( s ) ) + Ψ ν ( s ) ] ds s .
By using the first part of Equation (32), we have
( log χ ) 3 κ | v ( χ ) m 1 ( χ ) | 1 Γ ( κ ) 1 χ ( log χ s ) κ 1 | Ψ μ ( s ) | ds s + | a 0 δ 11 ( log χ ) 2 δ + a 0 δ 21 log χ δ + a 0 δ 31 δ | 1 T | Ψ μ ( s ) | ds s + | b 0 δ 12 ( log χ ) 2 δ + b 0 δ 22 log ( χ ) δ + b 0 δ 32 δ | 1 T log T s | Ψ μ ( s ) | ds s + | c 0 δ 13 ( log χ ) 2 2 δ + c 0 δ 23 log χ 2 δ + c 0 δ 33 2 δ | 1 T ( log T s ) 2 | Ψ μ ( s ) | ds s + | η 1 δ 11 ( log χ ) 2 δ Γ ( 2 κ 1 ) + η 1 δ 21 log ( χ ) δ Γ ( 2 κ 1 ) + η 1 δ 31 δ Γ ( 2 κ 1 ) | 1 T ( log T s ) 2 κ 2 | Ψ μ ( s ) | ds s + | η 2 δ 12 ( log χ ) 2 δ Γ ( 2 κ 2 ) + η 2 δ 22 log χ δ Γ ( 2 κ 2 ) + η 2 δ 32 δ Γ ( 2 κ 2 ) | 1 T ( log T s ) 2 κ 3 | Ψ μ ( s ) | ds s + | η 3 δ 13 ( log χ ) 2 δ Γ ( 2 κ 3 ) + η 3 δ 23 log χ δ Γ ( 2 κ 3 ) + η 3 δ 33 δ Γ ( 2 κ 3 ) | 1 T ( log T s ) 2 κ 4 | Ψ μ ( s ) | ds s ,
where m 1 ( χ ) are those terms which are free of Ψ U . By using Equation (8) and ( A 1 ) of Remark 3, Equation (33) becomes
v m 1 W R κ ϵ μ .
By following similar steps for Equation (32), we have
w m 2 W R σ ϵ ν .

4.1. First Method

Theorem 4.
Let [ H 1 ] hold, and
Λ = 1 R κ R σ L U L g ( 1 R κ L ¯ U ) ( 1 R σ L ¯ g ) > 0 .
Then, Equation (1) has HUS .
Proof. 
Let ( v , w ) W × W satisfy Equation (24) and ( ω , υ ) W × W satisfy
H D κ ω ( χ ) U ( χ , υ ( χ ) , H D κ ω ( χ ) ) = 0 , χ M , H D σ υ ( χ ) g ( χ , ω ( χ ) , H D σ υ ( χ ) ) = 0 , χ M , H D κ 1 ω ( 1 ) = a 0 H D κ 1 ω ( T ) + η 1 H I κ 1 ω ( T ) , H D κ 2 ω ( 1 ) = b 0 H D κ 2 ω ( T ) + η 2 H I κ 2 ω ( T ) , H D κ 3 ω ( 1 ) = c 0 H D κ 3 ω ( T ) + η 3 H I κ 3 ω ( T ) , H D σ 1 υ ( 1 ) = a 1 H D σ 1 υ ( T ) + η 4 H I σ 1 υ ( T ) , H D σ 2 υ ( 1 ) = b 1 H D σ 2 υ ( T ) + η 5 H I σ 2 υ ( T ) , H D σ 3 υ ( 1 ) = c 1 H D σ 3 υ ( T ) + η 6 H I σ 3 υ ( T ) .
Now, by using Lemma 1, for χ M , we find that Equation (35) has the following solution:
ω ( χ ) = 1 Γ ( κ ) 1 χ ( log χ s ) κ 1 μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s a 0 δ 11 ( log χ ) κ 1 δ + a 0 δ 21 ( log χ ) κ 2 δ + a 0 δ 31 ( log χ ) κ 3 δ 1 T μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s b 0 δ 12 ( log χ ) κ 1 δ + b 0 δ 22 ( log χ ) κ 2 δ + b 0 δ 32 ( log χ ) κ 3 δ 1 T log T s μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s c 0 δ 13 ( log χ ) κ 1 2 δ + c 0 δ 23 ( log χ ) κ 2 2 δ + c 0 δ 33 ( log χ ) κ 3 2 δ 1 T ( log T s ) 2 μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s η 1 δ 11 ( log χ ) κ 1 δ Γ ( 2 κ 1 ) + η 1 δ 21 ( log χ ) κ 2 δ Γ ( 2 κ 1 ) + η 1 δ 31 ( log χ ) κ 3 δ Γ ( 2 κ 1 ) 1 T ( log T s ) 2 κ 2 μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s η 2 δ 12 ( log χ ) κ 1 δ Γ ( 2 κ 2 ) + η 2 δ 22 ( log χ ) κ 2 δ Γ ( 2 κ 2 ) + η 2 δ 32 ( log χ ) κ 3 δ Γ ( 2 κ 2 ) 1 T ( log T s ) 2 κ 3 μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s η 3 δ 13 ( log χ ) κ 1 δ Γ ( 2 κ 3 ) + η 3 δ 23 ( log χ ) κ 2 δ Γ ( 2 κ 3 ) + η 3 δ 33 ( log χ ) κ 3 δ Γ ( 2 κ 3 ) 1 T ( log T s ) 2 κ 4 μ ( s , υ ( s ) , H D κ ω ( s ) ) ds s , υ ( χ ) = 1 Γ ( σ ) 1 χ ( log χ s ) σ 1 ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s a 1 δ 11 * ( log χ ) σ 1 δ * + a 1 δ 21 * ( log χ ) σ 2 δ * + a 1 δ 31 * ( log χ ) σ 3 δ * 1 T ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s b 1 δ 12 * ( log χ ) σ 1 δ * + b 1 δ 22 * ( log χ ) σ 2 δ * + b 1 δ 32 * ( log χ ) σ 3 δ * 1 T log T s ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s c 1 δ 13 * ( log χ ) σ 1 2 δ * + c 1 δ 23 * ( log χ ) σ 2 2 δ * + c 1 δ 33 * ( log χ ) σ 3 2 δ * 1 T ( log T s ) 2 ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s η 4 δ 11 * ( log χ ) σ 1 δ * Γ ( 2 σ 1 ) + η 4 δ 21 * ( log χ ) σ 2 δ * Γ ( 2 σ 1 ) + η 4 δ 31 * ( log χ ) σ 3 δ * Γ ( 2 σ 1 ) 1 T ( log T s ) 2 σ 2 ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s η 5 δ 12 * ( log χ ) σ 1 δ * Γ ( 2 σ 2 ) + η 5 δ 22 * ( log χ ) σ 2 δ * Γ ( 2 σ 2 ) + η 5 δ 32 * ( log χ ) σ 3 δ * Γ ( 2 σ 2 ) 1 T ( log T s ) 2 σ 3 ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s η 6 δ 13 * ( log χ ) σ 1 δ * Γ ( 2 σ 3 ) + η 6 δ 23 * ( log χ ) σ 2 δ * Γ ( 2 σ 3 ) + η 6 δ 33 * ( log χ ) σ 3 δ * Γ ( 2 σ 3 ) 1 T ( log T s ) 2 σ 4 ν ( s , ω ( s ) , H D σ υ ( s ) ) ds s .
Consider
( log χ ) 3 κ | v ( χ ) ω ( χ ) | ( log χ ) 3 κ | v ( χ ) m 1 ( χ ) | + ( log χ ) 3 κ | m 1 ( χ ) ω ( χ ) | .
By applying Lemma 4 in Equation (37), we have
( log χ ) 3 κ | v ( χ ) ω ( χ ) | R κ ϵ μ + ( log χ ) 3 κ Γ ( κ ) 1 χ ( log χ s ) κ 1 | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s + | a 0 δ 11 ( log χ ) 2 δ + a 0 δ 21 log ( χ ) δ + a 0 δ 31 δ | 1 T | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s + | b 0 δ 12 ( log χ ) 2 δ + b 0 δ 22 log ( χ ) δ + b 0 δ 32 δ | 1 T log T s | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s + | c 0 δ 13 ( log χ ) 2 2 δ + c 0 δ 23 log ( χ ) 2 δ + c 0 δ 33 2 δ | 1 T ( log T s ) 2 | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s + | η 1 δ 31 δ Γ ( 2 κ 1 ) + η 1 δ 21 log ( χ ) δ Γ ( 2 κ 1 ) + η 1 δ 11 ( log χ ) 2 δ Γ ( 2 κ 1 ) | 1 T ( log T s ) 2 κ 2 | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s + | η 2 δ 12 ( log χ ) 2 δ Γ ( 2 κ 2 ) + η 2 δ 22 log ( χ ) δ Γ ( 2 κ 2 ) + η 2 δ 32 δ Γ ( 2 κ 2 ) | × 1 T ( log T s ) 2 κ 3 | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s + | η 3 δ 13 ( log χ ) 2 δ Γ ( 2 κ 3 ) + η 3 δ 23 log ( χ ) δ Γ ( 2 κ 3 ) + η 3 δ 33 δ Γ ( 2 κ 3 ) | 1 T ( log T s ) 2 κ 4 | μ ( s , w ( s ) , H D κ v ( s ) ) μ ( s , υ ( s ) , H D κ ω ( s ) ) | ds s R κ ϵ μ + [ | a 0 δ 31 log ( T ) δ | + | ( 2 a 0 δ 21 + b 0 δ 32 ) ( log T ) 2 2 δ | + | ( 6 a 0 δ 11 + 3 b 0 δ 22 + c 0 δ 33 ) ( log T ) 3 6 δ | + | ( 3 b 0 δ 12 + c 0 δ 23 ) ( log T ) 4 6 δ | + | c 0 δ 13 ( log T ) 5 6 δ | + ( log T ) 3 Γ ( κ ) + | ( η 1 δ 21 + ( 2 κ 1 ) η 2 δ 12 ) ( log T ) 2 κ δ Γ ( 2 κ ) | + | ( η 1 δ 31 + ( 2 κ 1 ) η 2 δ 22 + ( 2 κ 1 ) ( 2 κ 2 ) η 3 δ 13 ) ( log T ) 2 κ 1 δ Γ ( 2 κ ) | + | η 3 δ 33 ( log T ) 2 κ 3 δ Γ ( 2 κ 2 ) | + | η 1 δ 11 ( log T ) 2 κ + 1 δ Γ ( 2 κ ) | + | ( η 2 δ 32 + ( 2 κ 2 ) η 3 δ 23 ) ( log T ) 2 κ 2 δ Γ ( 2 κ 1 ) | ] L μ v ω W + L ¯ μ H D κ v H D κ ω W .
By utilizing [ H 1 ] of Theorem 1 and Equation (8) in Equation (38), we obtain
v ω W R κ ϵ μ 1 R κ L ¯ μ + R κ L μ 1 R κ L ¯ μ w υ W .
Equivalently, we have
w υ W R σ ϵ ν 1 R σ L ¯ ν + R σ L ν 1 R σ L ¯ ν v ω W .
Equations (39) and (40) can be written as
v ω W R κ L U 1 R κ L ¯ U w υ W R κ ϵ μ 1 R κ L ¯ μ , w υ W R σ L ν 1 R σ L ¯ ν v ω W R σ ϵ ν 1 R σ L ¯ ν , 1 R κ L μ 1 R κ L ¯ μ R σ L ν 1 R σ L ¯ ν 1 v ω W w υ W R κ ϵ μ 1 R κ L ¯ μ R σ ϵ ν 1 R σ L ¯ ν .
Thus, we have
v ω W w υ W 1 Λ R κ L μ Λ ( 1 R κ L ¯ μ ) R σ L ν Λ ( 1 R σ L ¯ ν ) 1 Λ R κ ϵ μ 1 R κ L ¯ μ R σ ϵ ν 1 R σ L ¯ ν ,
where
Λ = 1 R κ R σ L μ L ν ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) > 0 .
Consequently, we have
v ω W R κ ϵ μ Λ ( 1 R κ L ¯ μ ) + R κ R σ L μ ϵ ν Λ ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) , w υ W R σ ϵ ν Λ ( 1 R σ L ¯ ν ) + R κ R σ L ν ϵ μ Λ ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) ,
from which we have
v ω W + w υ W R κ ϵ μ Λ ( 1 R κ L ¯ μ ) + R σ ϵ ν Λ ( 1 R σ L ¯ ν ) + R κ R σ L μ ϵ ν Λ ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) + R κ R σ L ν ϵ μ Λ ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) .
By letting ϵ = max ϵ μ , ϵ ν , then from Equation (41), we have
( v , w ) ( ω , υ ) W × W C μ , ν ϵ ,
where
C μ , ν = R κ Λ ( 1 R κ L ¯ μ ) + R σ Λ ( 1 R σ L ¯ ν ) + R κ R σ L μ Λ ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) + R κ R σ L ν Λ ( 1 R κ L ¯ μ ) ( 1 R σ L ¯ ν ) .
Remark 4.
By letting Φ μ , ν ( ϵ ) = C μ , ν ϵ , Φ μ , ν ( 0 ) = 0 in (42), then by Definition 4, Equation (1) is generalized as HU stable.
  • [ ( H 3 ) ] Let functions Θ μ , Θ ν : M R + be nondecreasing. Then, there are Y Θ μ , Y Θ ν > 0 such that for every χ M , the following inequalities hold:
    I κ Θ μ ( χ ) Y Θ μ Θ μ ( χ ) and I σ Θ ν ( χ ) Y Θ ν Θ ν ( χ )
Remark 5.
Similarly, we obtained the HURS and GHURS for Equation (1) by utilizing Lemma 4, Theorem 5 and Definitions 5 and 6 with [ H 3 ] and Λ * > 0 .

4.2. Second Method

Theorem 5.
Let [ H 1 ] hold, and if Λ * = 1 R σ L ν 1 R σ L ¯ ν + R κ L μ 1 R κ L ¯ μ > 0 , then Equation (1) is HU stable.
Proof. 
Equations (39) and (40) imply that
v ω W + w υ W R κ ϵ μ 1 R κ L ¯ μ + R σ ϵ ν 1 R σ L ¯ ν + R σ L ν 1 R σ L ¯ ν v ω W + R κ L μ 1 R κ L ¯ μ w υ W .
By letting max ϵ μ , ϵ ν = ϵ , then from Equation (43), we have
( v , w ) ( ω , υ ) W × W C μ , ν ϵ ,
where
C μ , ν = R κ Λ * ( 1 R κ L ¯ μ ) + R σ Λ * ( 1 R σ L ¯ ν ) .
Remark 6.
Using Remark 4, we have GHUS .
Remark 7.
1
The EU and HUS results for CS s of third-order nonlinear DE s with AP conditions can be obtained if we set κ = σ = 3 , a i = b i = c i = 1 ( i = 0 , 1 ) and η i = 0 ( i = 1 , 2 , , 6 ) in Equation (1).
2
The EU and HUS results for CS s of third-order nonlinear DE s with the initial conditions will be obtained if we set κ = σ = 3 , a i = b i = c i = 0 ( i = 0 , 1 ) and η i = 0 ( i = 1 , 2 , , 6 ) in Equation (1).
3
The EU and HUS results for CS s of third-order nonlinear DE s with integro-differential BCs will be obtained if we set κ = σ = 3 and a i = b i = c i = 0 ( i = 0 , 1 ) in Equation (1).

5. Example

Example 1.
Let
H D κ v ( χ ) 2 + | H D κ v ( χ ) | + | w ( χ ) | 30 e χ + 50 ( 0.5 + | H D κ v ( χ ) | + | w ( χ ) | ) = 0 , χ [ 1 , e ] , H D σ w ( χ ) χ cos v ( χ ) w ( χ ) sin χ 70 | H D σ w ( χ ) | 50 + | H D σ w ( χ ) | = 0 , χ [ 1 , e ] , H D κ 1 v ( 1 ) = a 0 H D κ 1 v ( e ) + η 1 H I κ 1 v ( e ) , H D κ 2 v ( 1 ) = b 0 H D κ 2 v ( e ) + η 2 H I κ 2 v ( e ) H D κ 3 v ( 1 ) = c 0 H D κ 3 v ( e ) + η 3 H I κ 3 v ( e ) , H D σ 1 w ( 1 ) = a 1 H D σ 1 w ( e ) + η 4 H I σ 1 w ( e ) , H D σ 2 w ( 1 ) = b 1 H D σ 2 w ( e ) + η 5 H I σ 2 w ( e ) H D σ 3 w ( 1 ) = c 1 H D σ 3 w ( e ) + η 6 H I σ 3 w ( e ) .
Here, we have κ = σ = 5 2 , a 0 = a 1 = η 1 = η 2 = 2 5 , b 0 = b 1 = η 3 = η 4 = 3 5 and c 0 = c 1 = η 5 = η 6 = 1 5 . Moreover, we find L μ = L ¯ μ = 1 30 e 50 and L ν = L ¯ ν = 1 50 from the nonlinear terms of Equation (45). Therefore, we have
R κ L μ ( 1 L ¯ ν ) + R σ L ν ( 1 L ¯ μ ) ( 1 L ¯ ν ) ( 1 L ¯ μ ) 0.75141 < 1 ,
Thus, Equation (45) has a solution which must be unique.
(i) 
If we take μ ( χ , w ( χ ) , H D κ v ( χ ) ) = ( v ( χ ) ) 2 + 1 50 + w ( χ ) , ν ( χ , v ( χ ) , H D σ w ( χ ) ) = 80 v ( χ ) + ( w ( χ ) ) 2 80 , and v ( χ ) = w ( χ ) = χ , then with the values a 0 = a 1 = η 1 = η 2 = 2 5 , b 0 = b 1 = η 3 = η 4 = 3 5 and c 0 = c 1 = η 5 = η 6 = 1 5 , the graph of the solution is shown in Figure 1.
(ii) 
If we take μ ( χ , w ( χ ) , H D κ v ( χ ) ) = ( v ( χ ) ) 2 + 1 50 + w ( χ ) , ν ( χ , v ( χ ) , H D σ w ( χ ) ) = 80 v ( χ ) + ( w ( χ ) ) 2 80 and v ( χ ) = w ( χ ) = χ , then with the values a 0 = a 1 = η 1 = η 2 = 2 5 , b 0 = b 1 = η 3 = η 4 = 3 5 and c 0 = c 1 = η 5 = η 6 = 1 5 , the graph of the solution is shown in Figure 2.
(iii) 
If we take μ ( χ , w ( χ ) , H D κ v ( χ ) ) = ( v ( χ ) ) 2 + 1 50 + w ( χ ) , ν ( χ , v ( χ ) , H D σ w ( χ ) ) = 80 v ( χ ) + ( w ( χ ) ) 2 80 and v ( χ ) = w ( χ ) = χ , then with the values a 0 = a 1 = η 1 = η 2 = 2 5 , b 0 = b 1 = η 3 = η 4 = 3 5 and c 0 = c 1 = η 5 = η 6 = 1 5 , the graph of the solution is shown in Figure 3.
(iv) 
If we take μ ( χ , w ( χ ) , H D κ v ( χ ) ) = ( v ( χ ) ) 2 + 1 50 + w ( χ ) , ν ( χ , v ( χ ) , H D σ w ( χ ) ) = 80 v ( χ ) + ( w ( χ ) ) 2 80 and v ( χ ) = w ( χ ) = χ , then with the values a 0 = a 1 = η 1 = η 2 = 2 5 , b 0 = b 1 = η 3 = η 4 = 3 5 and c 0 = c 1 = η 5 = η 6 = 1 5 , the graph of the solution is shown in Figure 4.
Furthermore, the conditions Λ > 0 and Λ * > 0 of Theorems 4 and 5 are also verified. Therefore, in both approaches, Equation (45) has HUS , GHUS , HURS and GHURS .

6. Conclusions

We utilized the contraction principle and Leray–Schauder fixed point theorem for the existence theory of FDE s (Equation (1)). We concluded that under some specific assumptions, the systems have at least one solution. Furthermore, we presented the HUS , GHUS , HURS and GHURS by utilizing the perturbations in Equation (1) and some necessary conditions.
The applicability of the outcomes was checked with an example. The proposed system in Equation (1) is the generalization of third-order ODE s , particularly for κ = σ = 3 , which is vastly utilized in applied sciences [2]. See the following for κ = σ = 3 :
1
η i = 0 ( i = 1 , 2 , , 6 ) and a j = b j = c j = 0 ( j = 0 , 1 ) , and then we gain third-order coupled ODE s with the initial conditions.
2
η i = 0 ( i = 1 , 2 , , 6 ) and a j = b j = c j = 1 ( j = 0 , 1 ) , and then we gain third-order coupled ODE s with BCs in the form of AP .
3
a j = b j = c j = 0 ( j = 0 , 1 ) , and then we gain third-order coupled ODE s with integro-differential BCs. Using MATLAB, we draw graphs for the particular variables and particular functions.

Author Contributions

Conceptualization, L.G., U.R., A.Z. and M.A.; formal analysis, L.G., U.R., A.Z. and M.A.; writing original draft preparation, L.G., U.R., A.Z. and M.A.; writing—review and editing, L.G., U.R., A.Z. and M.A.; funding acquisition, L.G., U.R., A.Z. and M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (12101086) and Changzhou Science and Technology Planning Project (CJ20210133).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equation. In North-Holl and Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  2. Rihan, F.A. Numerical Modeling of Fractional Order Biological Systems. Abstr. Appl. Anal. 2013, 2013, 816803. [Google Scholar] [CrossRef] [Green Version]
  3. Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
  4. Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
  5. Vintagre, B.M.; Podlybni, I.; Hernandez, A.; Feliu, V. Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 2000, 3, 231–248. [Google Scholar]
  6. Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
  7. Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
  8. Chen, Y.; An, H. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 2008, 200, 87–95. [Google Scholar] [CrossRef]
  9. Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
  10. Riaz, U.; Zada, A.; Ali, Z.; Cui, Y.; Xu, J. Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv. Differ. Equ. 2019, 2019, 226. [Google Scholar] [CrossRef]
  11. Agarwal, R.P.; Ahmad, B.; Alsaedi, A. Fractional-order differential equations with anti-periodic boundary conditions: A survey. Bound. Value Probl. 2017, 2017, 173. [Google Scholar] [CrossRef] [Green Version]
  12. Ahmad, B.; Ntouyas, S.K. Fractional differential inclusions with fractional separated boundary conditions. Fract. Calc. Appl. Anal. 2012, 15, 362–382. [Google Scholar] [CrossRef]
  13. Goodrich, C. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 2011, 61, 191–202. [Google Scholar] [CrossRef]
  14. Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
  15. Alam, M.; Shah, D. Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives. Chaos Solitons Fract. 2021, 150, 111122. [Google Scholar] [CrossRef]
  16. Ali, A.H.; Páles, Z. Taylor-type expansions in terms of exponential polynomial. Math. Inequal. Appl. 2022, 25, 1123–1141. [Google Scholar] [CrossRef]
  17. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
  18. Alqifiary, Q.; Jung, S. Laplace transform and generalized Hyers–Ulam stability of linear differential equations. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
  19. Rezaei, H.; Jung, S.; Rassias, T. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
  20. Wang, C.; Xu, T. Hyers–Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl. Math. 2015, 60, 383–393. [Google Scholar] [CrossRef] [Green Version]
  21. Liu, K.; Feçkan, M.; O’Regan, D.; Wang, J. Hyers–Ulam stability and existence of solutions for differential equations with Caputo–Fabrizio fractional derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef] [Green Version]
  22. Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel. Chaos Soliton Fract. 2020, 132, 109534. [Google Scholar] [CrossRef]
  23. Luo, D.; Alam, M.; Zada, A.; Riaz, U.; Luo, Z. Existence and stability of implicit fractional differential equations with Stieltjes boundary conditions having Hadamard derivatives. Complexity 2021, 2021, 8824935. [Google Scholar] [CrossRef]
  24. Aftabizadeh, A.R.; Huang, Y.K.; Pavel, N.H. Nonlinear 3rd-order differential equations with anti-periodic boundary conditions some optimal control problems. J. Math. Anal. Appl. 1995, 192, 266–293. [Google Scholar] [CrossRef] [Green Version]
  25. Gregus, M. Third Order Linear Differential Equations; Reidel: Dordrecht, The Netherlands, 1987. [Google Scholar]
  26. Gupta, C.P. On a 3rd-order three-point boundary value problem at resonance. Differ. Integral Equ. 1989, 2, 1–12. [Google Scholar]
  27. Silva, T.C.; Tenenblat, K. Third order differential equations describing pseudospherical surfaces. J. Differ. Equ. 2015, 259, 4897–4923. [Google Scholar] [CrossRef]
  28. Ezeilo, J.O.C. A property of the phase space trajectories of a third order nonlinear ordinary differential equation. J. Lond. Math. Soc. 1962, 37, 33–41. [Google Scholar] [CrossRef]
  29. Rauch, L.L. Oscillation of a third order nonlinear autonomous system. In Contributions to the Theory of Nonlinear Oscillations; Lefschetz, S., Ed.; Princeton University Press: Princeton, NJ, USA, 1950; Volume 1, pp. 39–88. [Google Scholar]
  30. Sherman, S. A third-order nonlinear system arising from a nuclear spin generator. Contrib. Diff. Equ. 1963, 2, 197–227. [Google Scholar]
  31. Agarwal, R.P.; Cabada, A.; Otero-Espinar, V.; Dontha, S. Existence and uniqueness of solutions for anti-periodic difference equations. Arch. Inequal. Appl. 2004, 2, 397–411. [Google Scholar]
  32. Ahmad, B.; Nieto, J.J. Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 2008, 69, 3291–3298. [Google Scholar] [CrossRef]
  33. Chen, H.L. Antiperiodic wavelets. J. Comput. Math. 1996, 14, 32–39. [Google Scholar]
  34. Shao, J. Anti-periodic solutions for shunting inhibitory cellular neural networks with timevarying delays. Phys. Lett. A 2008, 372, 5011–5016. [Google Scholar] [CrossRef]
  35. Shah, K.; Tunç, C. Existence theory and stability analysis to a system of boundary value problem. J. Taibah Univ. Sci. 2017, 11, 1330–1342. [Google Scholar] [CrossRef]
  36. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
  37. Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
Figure 1. Sketch of solution in case (i).
Figure 1. Sketch of solution in case (i).
Fractalfract 07 00013 g001
Figure 2. Sketch of solution in case (ii).
Figure 2. Sketch of solution in case (ii).
Fractalfract 07 00013 g002
Figure 3. Sketch of solution in case (iii).
Figure 3. Sketch of solution in case (iii).
Fractalfract 07 00013 g003
Figure 4. Sketch of solution in case (iv).
Figure 4. Sketch of solution in case (iv).
Fractalfract 07 00013 g004
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Guo, L.; Riaz, U.; Zada, A.; Alam, M. On Implicit Coupled Hadamard Fractional Differential Equations with Generalized Hadamard Fractional Integro-Differential Boundary Conditions. Fractal Fract. 2023, 7, 13. https://doi.org/10.3390/fractalfract7010013

AMA Style

Guo L, Riaz U, Zada A, Alam M. On Implicit Coupled Hadamard Fractional Differential Equations with Generalized Hadamard Fractional Integro-Differential Boundary Conditions. Fractal and Fractional. 2023; 7(1):13. https://doi.org/10.3390/fractalfract7010013

Chicago/Turabian Style

Guo, Limin, Usman Riaz, Akbar Zada, and Mehboob Alam. 2023. "On Implicit Coupled Hadamard Fractional Differential Equations with Generalized Hadamard Fractional Integro-Differential Boundary Conditions" Fractal and Fractional 7, no. 1: 13. https://doi.org/10.3390/fractalfract7010013

APA Style

Guo, L., Riaz, U., Zada, A., & Alam, M. (2023). On Implicit Coupled Hadamard Fractional Differential Equations with Generalized Hadamard Fractional Integro-Differential Boundary Conditions. Fractal and Fractional, 7(1), 13. https://doi.org/10.3390/fractalfract7010013

Article Metrics

Back to TopTop