Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities
Abstract
:1. Introduction
2. Fractional Integral Operators
- (1)
- The following integral operator is produced, for in (8):
- (2)
- The following generalized Hadamard integral operator is produced, for in (8):
- (3)
- The following generalized Katugampola integral operator is produced, for , in (8):
- (4)
- The following generalized -integral operator is produced, for , in (8):
- (5)
- The following generalized conformable k-integral operator is produced, for in (8):Similarly, all above operators can be deduce for generalized k-integral operators (9).
- (6)
- (1)
- The integral operators given in [29] are reproduced, for .
- (2)
- (3)
- The integral operators given in [37] are reproduced, for , , and .
- (4)
- The integral operators given in [38] are reproduced, for , , and .
- (5)
- The integral operators given in [39] are reproduced, for , , , and .
- (6)
- The integral operators given in [40] are reproduced, for , , , and .
- (7)
- The integral operators given in [26] are reproduced, for , , , and .
- (8)
- The integral operators given in [41] are reproduced, for , , and .
- (9)
- The integral operators given in [42] are reproduced, for and .
- (10)
- The integral operators given in [30] are reproduced, for , and .
- (11)
- (12)
- (13)
- The integral operators given in [28] are reproduced, for .
- (14)
- The integral operators given in [41] are reproduced, for and .
- (15)
- The integral operators given in [43] are reproduced, for , and .
- (16)
3. Pólya-Szegö and Chebyshev Type Inequalities for Generalized k-Fractional Integral Operators
- f and g be two positive and integrable functions on ;
- be an increasing and differentiable function with ;
- there exist four positive integrable functions , , and , such that
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov. 1882, 2, 93–98. [Google Scholar]
- Hadamard, J. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl. 1893, 58, 171–215. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Pólya, G.; Szegö, G. Aufgaben und Lehrsatze aus der Analysis; Springer: Berlin, Germany, 1925. [Google Scholar]
- Petrović, M. Sur une fontionnelle. Publ. Math. Univ. Belgrade 1932, 1, 146–149. [Google Scholar]
- Grüss, G. Über das maximum des absolten Betrages von . Math. Z. 1935, 39, 215–226. [Google Scholar] [CrossRef]
- Ostrowski, A. Uber die Absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Appl. Math. 2009, 10, 1–12. [Google Scholar]
- Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
- Ntouyas, S.K.; Agarwal, P.; Tariboon, J. On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 2016, 10, 491–504. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some new Riemann-Liouville fractional integral inequalities. Int. J. Math. Math. Sci. 2014, 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Andrić, M.; Farid, G.; Mehmood, S.; Pečarić, J. Pólya-Szegö and Chebyshev types inequalities via an extended generalized Mittag-Leffler function. Math. Ineq. Appl. 2019, 22, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Akdemir, A.O.; Bhatti, M.Y.; Nadeem, M. New refinements of Chebyshev-Pólya-Szegö-type inequalities via generalized fractional integral operators. J. Inequal. Appl. 2020, 2020, 157. [Google Scholar] [CrossRef]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a type Riemann-Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
- Deniz, E.; Akdemir, A.O.; Yüksel, E. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AMIS Math. 2020, 5, 956–965. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Mishra, V.N.; Mehmood, S. Fractional integral inequalities of Grüss type via generalized Mittag-Leffler function. Int. J. Anal. Appl. 2019, 17, 548–558. [Google Scholar]
- Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. Pólya-Szegö and Chebyshev types inequalities via generalized k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 125. [Google Scholar] [CrossRef]
- Wang, G.; Agarwal, P.; Chand, M. Certain Grüss type inequalities involving the generalized fractional integral operator. J. Inequal. Appl. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Diamond, N.T. Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results. East Asian Math. J. 2003, 19, 27–39. [Google Scholar]
- Agarwal, P. Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 2017, 40, 3882–3891. [Google Scholar] [CrossRef]
- Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k,h)-Riemann-Liouville fractional integral. New Trends Math. Sci. 2016, 4, 138–146. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. Analytical Inequalities for Fractional Calculus Operators and the Mittag-Leffler Function; Element: Zagreb, Croatia, 2021. [Google Scholar]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Mubeen, S.; Naeem, M.N. Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Func. 2018, 9, 53–65. [Google Scholar]
- Kwun, Y.C.; Farid, G.; Latif, N.; Nazeer, W.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Mehmood, S.; Farid, G.; Khan, K.A.; Yussouf, M. New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h,m)-convex function. Eng. Appl. Sci. Lett. 2020, 3, 9–18. [Google Scholar] [CrossRef]
- Khan, T.U.; Khan, M.A. Generalized conformable fractional operators. J. Comput. Appl. Math. 2019, 346, 378–389. [Google Scholar] [CrossRef]
- Che, Y.; Keir, M.Y.A. Study on the training model of football movement trajectory drop point based on fractional differential equation. Appl. Math. Nonlinear Sci. 2021, 1–6. [Google Scholar] [CrossRef]
- Farid, G. A unified integral operator and further its consequences. Open J. Math. Anal. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Man, S.; Yang, R. Educational reform informatisation based on fractional differential equation. Appl. Math. Nonlinear Sci. 2021, 1–10. [Google Scholar] [CrossRef]
- Zhao, N.; Yao, F.; Khadidos, A.O.; Muwafak, B.M. The impact of financial repression on manufacturing upgrade based on fractiona Fourier transform and probability. Appl. Math. Nonlinear Sci. 2021, 1–11. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M. Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Sarikaya, M.Z.; Dahmani, M.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Farid, G.; Mehmood, S.; Nonlaopon, K.; Yan, T. Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities. Fractal Fract. 2022, 6, 90. https://doi.org/10.3390/fractalfract6020090
Zhang Z, Farid G, Mehmood S, Nonlaopon K, Yan T. Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities. Fractal and Fractional. 2022; 6(2):90. https://doi.org/10.3390/fractalfract6020090
Chicago/Turabian StyleZhang, Zhiqiang, Ghulam Farid, Sajid Mehmood, Kamsing Nonlaopon, and Tao Yan. 2022. "Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities" Fractal and Fractional 6, no. 2: 90. https://doi.org/10.3390/fractalfract6020090
APA StyleZhang, Z., Farid, G., Mehmood, S., Nonlaopon, K., & Yan, T. (2022). Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities. Fractal and Fractional, 6(2), 90. https://doi.org/10.3390/fractalfract6020090