Next Article in Journal
A New Iterative Predictor-Corrector Algorithm for Solving a System of Nuclear Magnetic Resonance Flow Equations of Fractional Order
Next Article in Special Issue
Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function
Previous Article in Journal
Fractals: An Eclectic Survey, Part-I
Previous Article in Special Issue
The Mittag–Leffler Functions for a Class of First-Order Fractional Initial Value Problems: Dual Solution via Riemann–Liouville Fractional Derivative
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities

1
School of Computer Science, Chengdu University, Chengdu 610000, China
2
Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
3
Govt Boys Primary School Sherani, Hazro Attock 43440, Pakistan
4
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Fractal Fract. 2022, 6(2), 90; https://doi.org/10.3390/fractalfract6020090
Submission received: 15 December 2021 / Revised: 31 January 2022 / Accepted: 4 February 2022 / Published: 6 February 2022
(This article belongs to the Special Issue Fractional Calculus Operators and the Mittag-Leffler Function)

Abstract

:
Inequalities related to derivatives and integrals are generalized and extended via fractional order integral and derivative operators. The present paper aims to define an operator containing Mittag-Leffler function in its kernel that leads to deduce many already existing well-known operators. By using this generalized operator, some well-known inequalities are studied. The results of this paper reproduce Chebyshev and Pólya-Szegö type inequalities for Riemann-Liouville and many other fractional integral operators.

1. Introduction

Integral and derivative operators of fractional order are simple and important tools to generalize the classical theories and well-known problems related to integer order derivatives and integrals. Many modern subjects in different fields of mathematics, engineering, and sciences have been introduced due to the applications of fractional derivatives and integrals. These days, fractional integral/derivative operators are very frequently considered by the researchers working on mathematical inequalities to extend the classical literature. One can see the well-known inequalities related to integer order derivatives and integrals have been extended to fractional order derivatives and integrals. These include the inequalities of Chebyshev [1], Hadamard [2], Jensen [3], Pólya-Szegö [4], Petrovic [5], Grüss [6], Ostrowski [7], and many others. Here, we are interested to refer the versions of all these inequalities for Riemann-Liouville fractional integrals studied in [8,9,10,11,12,13].
It is interesting to compare the integral mean of product of two functions to the product of integral means of these functions. The Chebyshev inequality provides the comparison of integral mean of product of two positive functions of same monotonicity to the product of their integral means. After Chebyshev’s inequality, people started to analyze the error bounds of this inequality. For instance, the well-known Grüss inequality gives the error bounds of difference of terms of the Chebyshev inequality (which is well-known as Chebyshev-functional). The well-known Pólya-Szegö inequality gives the estimation of quotient in terms of the Chebyshev inequality for bounded functions. These inequalities have been studied for Riemann-Liouville and other fractional integral operators in [10,14,15,16,17,18,19,20].
Next, we give the results, which are necessary to produce the results of this paper. First, we give Chebyshev functional and then the Chebyshev inequality [1] as follows:
T ( f , g ) = 1 b a a b f ( τ ) g ( τ ) d τ 1 b a a b f ( τ ) d τ 1 b a a b g ( τ ) d τ ,
where f and g are two positive and integrable functions over the interval [ a , b ] . If f and g are synchronous on [ a , b ] , then Chebyshev inequality T ( f , g ) 0 is obtained.
The functional (1) has attracted the attention of many researchers due to its application in mathematical analysis. One of the famous inequalities related to functional (1) is the Grüss inequality [6], stated as follows:
T ( f , g ) ( U u ) ( V v ) 4 ,
where the positive and integrable functions f and g satisfy
u f ( τ ) U , v g ( τ ) V ,
for all τ [ a , b ] and constants u , U , v , V R .
Another famous inequality which will be useful to obtain our main results is the Pólya-Szegö inequality [4], stated as follows:
a b f 2 ( τ ) d τ a b g 2 ( τ ) d τ a b f ( τ ) g ( τ ) d τ 2 1 4 u v U V + U V u v 2 .
By using the Pólya-Szegö inequality, Dragomir and Diamond [21] proved the following Grüss type inequality:
T ( f , g ) ( U u ) ( V v ) 4 b a 2 u U v V a b f ( τ ) d τ a b g ( τ ) d τ ,
where positive and integrable functions f and g satisfy
0 < u f ( τ ) U < , 0 < v g ( τ ) V < ,
for all τ [ a , b ] and constants u , U , v , V R .
Inspired by the above-defined inequalities, our aim in this paper is to get some fractional versions of these inequalities. The main objective is to give some new Pólya-Szegö and Chebyshev inequalities for generalized k-fractional integral operator containing Mittag-Leffler function in its kernel. In the upcoming section, we define a new k-fractional integral operator containing Mittag-Leffer function. In Section 3, we will utilize this k-fractional integral operator to obtain the Pólya-Szegö and Chebyshev inequalities. Moreover, the presented results are the generalizations of the results which are already published in [10,14,19].

2. Fractional Integral Operators

Fractional integral operators are very useful in the advancement of mathematical inequalities. A large number of fractional integral inequalities due to different types of fractional integral operators have been established (see [10,14,19,22,23,24,25,26,27,28,29] and references therein). Applications of fractional integral operators in differential equations and other fields can be found in [25,30,31,32,33,34,35]. The first formulation of fractional integral operator is the Riemann-Liouville fractional integral operator, defined as follows:
Definition 1.
Let f L 1 [ a , b ] . Then Riemann-Liouville fractional integrals of order σ C , ( σ ) > 0 are defined by:
ξ a + σ f ( x ) = 1 Γ ( σ ) a x ( x τ ) σ 1 f ( τ ) d τ , x > a
ξ b σ f ( x ) = 1 Γ ( σ ) x b ( τ x ) σ 1 f ( τ ) d τ , x < b ,
where Γ ( . ) is the gamma function defined as: Γ ( σ ) = 0 τ σ 1 e τ d τ .
In [36], Andrić et al. introduced the generalized fractional integral operators as follows:
Definition 2.
Let ϑ , θ , σ , l , μ , c C , ( θ ) , ( σ ) , ( l ) > 0 , ( c ) > ( μ ) > 0 with p 0 , r > 0 and 0 < q r + ( θ ) . Let f L 1 [ a , b ] and x [ a , b ] . Then the generalized fractional integral operators are defined by:
ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x ( x τ ) σ 1 E θ , σ , l μ , r , q , c ( ϑ ( x τ ) θ ; p ) f ( τ ) d τ ,
ξ θ , σ , l , ϑ , b μ , r , q , c f ( x ; p ) = u b ( τ x ) σ 1 E θ , σ , l μ , r , q , c ( ϑ ( τ x ) θ ; p ) f ( τ ) d τ ,
where E θ , σ , l μ , r , q , c ( τ ; p ) is the generalized Mittag-Leffler function defined by:
E θ , σ , l μ , r , q , c ( τ ; p ) = n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q Γ ( θ n + σ ) τ n ( l ) n r ,
B p ( x , y ) = 0 1 τ x 1 ( 1 τ ) y 1 e p τ ( 1 τ ) d τ and ( c ) n q = Γ ( c + n q ) Γ ( c ) .
In [32], Farid introduced the unified integral operators as follows:
Definition 3.
Let f , α : [ a , b ] R , 0 < a < b be the functions such that f be a positive and integrable and α be a differentiable and strictly increasing. Also, let φ x be an increasing function on [ a , ) and σ , l , μ , c C , p , θ , r 0 and 0 < q r + θ . Then for x [ a , b ] the integral operators are defined by:
α ξ θ , σ , l , ϑ , a + φ ; μ , r , q , c f ( x ; p ) = a x φ ( α ( x ) α ( τ ) ) α ( x ) α ( τ ) E θ , σ , l μ , r , q , c ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) f ( τ ) d ( α ( τ ) ) ,
α ξ θ , σ , l , ϑ , b φ ; μ , r , q , c f ( x ; p ) = x b φ ( α ( τ ) α ( x ) ) α ( τ ) α ( x ) E θ , σ , l μ , r , q , c ( ϑ ( α ( τ ) α ( x ) ) θ ; p ) f ( τ ) d ( α ( τ ) ) .
The following generalized k-integral operators involving Mittag-Leffler function with some modification is produced, for φ ( x ) = x σ k with k > 0 , in (6) and (7):
Definition 4.
Let f , α : [ a , b ] R , 0 < a < b be the functions such that f be a positive and integrable and α be a differentiable and strictly increasing. Also, let θ , σ , l , ϑ , μ , c C , p , θ , r 0 , 0 < q r + θ and k > 0 . Then for x [ a , b ] the integral operators are defined by:
α k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x ( α ( x ) α ( τ ) ) σ k 1 E θ , σ , l , k μ , r , q , c ( ϑ ( α ( x ) α ( τ ) ) θ k ; p ) f ( τ ) d ( α ( τ ) ) ,
α k ξ θ , σ , l , ϑ , b μ , r , q , c f ( x ; p ) = x b ( α ( τ ) α ( x ) ) σ k 1 E θ , σ , l , k μ , r , q , c ( ϑ ( α ( τ ) α ( x ) ) θ k ; p ) f ( τ ) d ( α ( τ ) ) ,
where E θ , σ , l , k μ , r , q , c ( τ ; p ) is the Mittag-Leffler function defined by:
E θ , σ , l , k μ , r , q , c ( τ ; p ) = n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q k Γ k ( θ n + σ ) τ n ( l ) n r .
Remark 1.
The following integral operators can be deduced from (8) and (9):
(1)
The following integral operator is produced, for α ( x ) = x in (8):
k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x ( x τ ) σ k 1 E θ , σ , l , k μ , r , q , c ( ϑ ( x τ ) θ k ; p ) f ( τ ) d τ .
(2)
The following generalized Hadamard integral operator is produced, for α ( x ) = l n x in (8):
k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x l n x τ σ k 1 E θ , σ , l , k μ , r , q , c ϑ l n x τ θ k ; p f ( τ ) d τ τ .
(3)
The following generalized Katugampola integral operator is produced, for α ( x ) = x ρ ρ , ρ > 0 in (8):
ρ k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x x ρ τ ρ ρ σ k 1 E θ , σ , l , k μ , r , q , c ϑ x ρ τ ρ ρ θ k ; p f ( τ ) τ ρ 1 d τ .
(4)
The following generalized ( k , s ) -integral operator is produced, for α ( x ) = x s + 1 s + 1 , s R { 1 } in (8):
s k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x x s + 1 τ s + 1 s + 1 σ k 1 E θ , σ , l , k μ , r , q , c ϑ x s + 1 τ s + 1 s + 1 θ k ; p f ( τ ) τ s d τ .
(5)
The following generalized conformable k-integral operator is produced, for α ( x ) = x λ + ν λ + ν in (8):
λ , ν k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x x λ + ν τ λ + ν λ + ν σ k 1 E θ , σ , l , k μ , r , q , c ϑ x λ + ν τ λ + ν λ + ν θ k ; p f ( τ ) τ λ d ν τ .
Similarly, all above operators can be deduce for generalized k-integral operators (9).
(6)
The following generalized conformable ( k , s ) -integral operators are produced, for α ( x ) = ( x a ) s s , s > 0 in (8) and α ( x ) = ( b x ) s s , s > 0 in (9):
s k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x ( x a ) s ( τ a ) s s σ k 1 E θ , σ , l , k μ , r , q , c ϑ ( x a ) s ( τ a ) s s θ k ; p f ( τ ) ( τ a ) s 1 d τ .
s k ξ θ , σ , l , ϑ , b μ , r , q , c f ( x ; p ) = x b ( b x ) s ( b τ ) s s σ k 1 E θ , σ , l , k μ , r , q , c ϑ ( b x ) s ( b τ ) s s θ k ; p f ( τ ) ( b τ ) s 1 d τ .
Remark 2.
For different choices of parameters involving in the Mittag-Leffler function (10), one can obtain new generalized integral operators.
Remark 3.
From integral operators (8) and (9), we have the following particular cases:
(1)
The integral operators given in [29] are reproduced, for k = 1 .
(2)
The integral operators given in (4) and (5) are reproduced, for k = 1 and α ( x ) = x .
(3)
The integral operators given in [37] are reproduced, for k = 1 , α ( x ) = x , and p = 0 .
(4)
The integral operators given in [38] are reproduced, for k = 1 , α ( x ) = x , and r = l = 1 .
(5)
The integral operators given in [39] are reproduced, for k = 1 , α ( x ) = x , p = 0 , and r = l = 1 .
(6)
The integral operators given in [40] are reproduced, for k = 1 , α ( x ) = x , p = 0 , and q = r = l = 1 .
(7)
The integral operators given in [26] are reproduced, for k = 1 , α ( x ) = x ρ ρ , ρ > 0 , and ϑ = p = 0 .
(8)
The integral operators given in [41] are reproduced, for k = 1 , α ( x ) = l n x , and ϑ = p = 0 .
(9)
The integral operators given in [42] are reproduced, for α ( x ) = x s + 1 s + 1 and ϑ = p = 0 .
(10)
The integral operators given in [30] are reproduced, for k = 1 , α ( x ) = ( x ) λ + ν λ + ν and ϑ = p = 0 .
(11)
The integral operators given in [27] are reproduced, for α ( x ) = ( x a ) s s , s > 0 in (8) and α ( x ) = ( b x ) s s , s > 0 in (9) with ϑ = p = 0 .
(12)
The integral operators given in [33] are reproduced, for α ( x ) = ( x a ) s s , s > 0 in (8) and α ( x ) = ( b x ) s s , s > 0 in (9) with k = 1 and ϑ = p = 0 .
(13)
The integral operators given in [28] are reproduced, for ϑ = p = 0 .
(14)
The integral operators given in [41] are reproduced, for ϑ = p = 0 and k = 1 .
(15)
The integral operators given in [43] are reproduced, for ϑ = p = 0 , and α ( x ) = x .
(16)
The integral operators given in (2) and (3) are reproduced, for ϑ = p = 0 , α ( x ) = x , and k = 1 .
For constant function, from generalized k-fractional integral operator (8), we have
α k ξ θ , σ , l , ϑ , a + μ , r , q , c 1 ( x ; p ) = a x ( α ( x ) α ( τ ) ) σ k 1 E θ , σ , l , k μ , r , q , c ( ϑ ( α ( x ) α ( τ ) ) θ k ; p ) d ( α ( τ ) ) = a x ( α ( x ) α ( τ ) ) σ k 1 n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q k Γ k ( θ n + σ ) ϑ n ( α ( x ) α ( τ ) ) θ n k ( l ) n r d ( α ( τ ) ) = n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q k Γ k ( θ n + σ ) ϑ n ( l ) n r a x ( α ( x ) α ( τ ) ) θ n k + σ k 1 d ( α ( τ ) ) = k ( α ( x ) α ( a ) ) σ k n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q k Γ k ( θ n + σ ) ϑ n ( l ) n r ( α ( x ) α ( a ) ) θ n k θ n + σ = k ( α ( x ) α ( a ) ) σ k n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q k Γ k ( θ n + σ + k ) ϑ n ( α ( x ) α ( a ) ) θ n k ( l ) n r = k ( α ( x ) α ( a ) ) σ k E θ , σ + k , l , k μ , r , q , c ( ϑ ( α ( x ) α ( a ) ) θ k ; p ) .
Hence
α k ξ θ , σ , l , ϑ , a + μ , r , q , c 1 ( x ; p ) = k ( α ( x ) α ( a ) ) σ k E θ , σ + k , l , k μ , r , q , c ( ϑ ( α ( x ) α ( a ) ) θ k ; p ) : = χ a + σ ( x ; p )
similarly for constant function, from generalized fractional integral operator (9), we get
α k ξ θ , σ , l , ϑ , b μ , r , q , c 1 ( x ; p ) = k ( α ( b ) α ( x ) ) σ k E θ , σ + k , l , k μ , r , q , c ( ϑ ( α ( b ) α ( x ) ) θ k ; p ) : = χ b σ ( x ; p ) .
In the all upcoming results, the parameters of the Mittag-Leffler function are considered in R .

3. Pólya-Szegö and Chebyshev Type Inequalities for Generalized k-Fractional Integral Operators

In this section, we obtain Pólya-Szegö and Chebyshev type inequalities for generalized k-fractional integral operators containing Mittag-Leffler function in their kernels. For the reader’s convenience we will use a simplified notation:
α k Z σ f ( x ; p ) : = α k ξ θ , σ , l , ϑ , a + μ , r , q , c f ( x ; p ) = a x ( α ( x ) α ( τ ) ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ k ; p ) f ( τ ) d ( α ( τ ) ) ,
where
E σ k : = E θ , σ , l , k μ , r , q , c ( τ ; p ) = n = 0 B p ( μ + n q , c μ ) B ( μ , c μ ) ( c ) n q k Γ k ( θ n + σ ) τ n ( l ) n r .
Theorem 1.
Suppose that:
  • f and g be two positive and integrable functions on [ 0 , ) ;
  • α : [ a , b ] R be an increasing and differentiable function with α L [ a , b ] ;
  • there exist four positive integrable functions ζ 1 , ζ 2 , η 1 and η 2 , such that
0 < ζ 1 ( τ ) f ( τ ) ζ 2 ( τ ) , 0 < η 1 ( τ ) g ( τ ) η 2 ( τ ) ( τ [ a , x ] , x > a ) .
Then for generalized k-fractional integral operator containing Mittag-Leffler function, we have
α k Z σ η 1 η 2 f 2 ( x ; p ) α k Z σ ζ 1 ζ 2 g 2 ( x ; p ) α k Z σ ( ζ 1 η 1 + ζ 2 η 2 ) f g ( x ; p ) 2 1 4 .
Proof. 
From (20) for τ [ a , x ] with x > a , we can write
ζ 2 ( τ ) η 1 ( τ ) f ( τ ) g ( τ ) f ( τ ) g ( τ ) ζ 1 ( τ ) η 2 ( τ ) 0 ,
which implies
( ζ 1 ( τ ) η 1 ( τ ) + ζ 2 ( τ ) η 2 ( τ ) ) f ( τ ) g ( τ ) η 1 ( τ ) η 2 ( τ ) f 2 ( τ ) + ζ 1 ( τ ) ζ 2 ( τ ) g 2 ( τ ) .
Multiplying (22) with α ( x ) α ( τ ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) α ( τ ) on both sides and integrating, we get
a x α ( x ) α ( τ ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) ( ζ 1 ( τ ) η 1 ( τ ) + ζ 2 ( τ ) η 2 ( τ ) ) f ( τ ) g ( τ ) α ( τ ) d τ a x α ( x ) α ( τ ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) η 1 ( τ ) η 2 ( τ ) f 2 ( τ ) α ( τ ) d τ + a x ( α ( x ) α ( τ ) ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) ζ 1 ( τ ) ζ 2 ( τ ) g 2 ( τ ) α ( τ ) d τ .
Now by using k-fractional integral operator, we get
α k Z σ ( ζ 1 η 1 + ζ 2 η 2 ) f g ( x ; p ) α k Z σ η 1 η 2 f 2 ( x ; p ) + α k Z σ ζ 1 ζ 2 g 2 ( x ; p ) .
By applying AM-GM inequality, we get
α k Z σ ( ζ 1 η 1 + ζ 2 η 2 ) f g ( x ; p ) 2 α k Z σ η 1 η 2 f 2 ( x ; p ) α k Z σ ζ 1 ζ 2 g 2 ( x ; p ) ,
which leads to the required inequality (21). □
Corollary 1.
If ζ 1 = u , ζ 2 = U , η 1 = v and η 2 = V , then we have
α k Z σ f 2 ( x ; p ) α k Z σ g 2 ( x ; p ) α k Z σ f g ( x ; p ) 2 1 4 u v U V + U V u v 2 .
Remark 4.
In Theorem 1, for α ( x ) = x and k = 1 , we get [14] (Theorem 1), for ϑ = p = 0 (and a = 0 ), we get [19] (Lemma 3.1), for α ( x ) = x , k = 1 , ϑ = p = 0 (and a = 0 ), we get [10] (Lemma 3.1).
Theorem 2.
Under the assumptions of Theorem 1 with ς > 0 , we have
α k Z σ ζ 1 ζ 2 ( x ; p ) α k Z ς η 1 η 2 ( x ; p ) α k Z σ f 2 ( x ; p ) α k Z ς g 2 ( x ; p ) α k Z σ ζ 1 f ( x ; p ) α k Z ς η 1 g ( x ; p ) + α k Z σ ζ 2 f ( x ; p ) α k Z ς η 2 g ( x ; p ) 2 1 4 .
Proof. 
From (20), for τ , κ [ a , x ] with x > a , we can write
ζ 1 ( τ ) η 2 ( κ ) + ζ 2 ( τ ) η 1 ( κ ) f ( τ ) g ( κ ) f 2 ( τ ) g 2 ( κ ) + ζ 1 ( τ ) ζ 2 ( τ ) η 1 ( κ ) η 2 ( κ ) ,
which imply
ζ 1 ( τ ) f ( τ ) η 1 ( κ ) g ( κ ) + ζ 2 ( τ ) f ( τ ) η 2 ( κ ) g ( κ ) η 1 ( κ ) η 2 ( κ ) f 2 ( τ ) + ζ 1 ( τ ) ζ 2 ( τ ) g 2 ( κ ) .
Multiplying (24) with ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) α ( τ ) α ( κ ) on both sides and integrating, we get
a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) ζ 1 ( τ ) f ( τ ) η 1 ( κ ) g ( κ ) α ( τ ) α ( κ ) d τ d κ + a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) ζ 2 ( τ ) f ( τ ) η 2 ( κ ) g ( κ ) α ( τ ) α ( κ ) d τ d κ a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) η 1 ( κ ) η 2 ( κ ) f 2 ( τ ) α ( τ ) α ( κ ) d τ d κ + a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) ζ 1 ( τ ) ζ 2 ( τ ) g 2 ( κ ) α ( τ ) α ( κ ) d τ d κ .
Now by using k-fractional integral operator, we get
α k Z σ ζ 1 f ( x ; p ) α k Z ς η 1 g ( x ; p ) + α k Z σ ζ 2 f ( x ; p ) α k Z ς η 2 g ( x ; p ) α k Z σ f 2 ( x ; p ) α k Z ς η 1 η 2 ( x ; p ) + α k Z σ ζ 1 ζ 2 ( x ; p ) α k Z ς g 2 ( x ; p ) .
By applying AM-GM inequality, we get
α k Z σ ζ 1 f ( x ; p ) α k Z ς η 1 g ( x ; p ) + α k Z σ ζ 2 f ( x ; p ) α k Z ς η 2 g ( x ; p ) 2 α k Z σ f 2 ( x ; p ) α k Z ς η 1 η 2 ( x ; p ) α k Z σ ζ 1 ζ 2 ( x ; p ) α k Z ς g 2 ( x ; p ) ,
which leads to the required inequality (23). □
Corollary 2.
If ζ 1 = u , ζ 2 = U , η 1 = v and η 2 = V , then we have
χ σ ( x ; p ) χ ς ( x ; p ) α k Z σ f 2 ( x ; p ) α k Z ς g 2 ( x ; p ) α k Z σ f ( x ; p ) α k Z ς g ( x ; p ) 2 1 4 u v U V + U V u v 2 .
Remark 5.
In Theorem 2, for α ( x ) = x and k = 1 , we get [14] (Theorem 2), for ϑ = p = 0 (and a = 0 ), we get [19] (Lemma 3.6), for α ( x ) = x , k = 1 , ϑ = p = 0 (and a = 0 ), we get [10] (Lemma 3.3).
Theorem 3.
Under the assumptions of Theorem 1 with ς > 0 , we have
α k Z σ f 2 ( x ; p ) α k Z ς g 2 ( x ; p ) α k Z σ ( ζ 2 f g / η 1 ) ( x ; p ) α k Z ς ( η 2 f g / ζ 1 ) ( x ; p ) .
Proof. 
From (20), for τ [ a , x ] with x > a , we can write
ζ 2 ( τ ) f ( τ ) g ( τ ) η 1 ( τ ) f 2 ( τ ) 0
and
η 2 ( κ ) f ( κ ) g ( κ ) ζ 1 ( κ ) g 2 ( κ ) 0 .
Multiplying (26) with ( α ( x ) α ( τ ) ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) α ( τ ) and (27) with ( α ( x ) α ( κ ) ) ς k 1 E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) α ( κ ) on both sides and integrating, we get
a x α ( x ) α ( τ ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) f 2 ( τ ) α ( τ ) d τ a x α ( x ) α ( τ ) σ k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) ζ 2 ( τ ) η 1 ( τ ) f ( τ ) g ( τ ) α ( τ ) d τ
and
a x ( α ( x ) α ( κ ) ) ς k 1 E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) g 2 ( κ ) α ( κ ) d κ a x ( α ( x ) α ( κ ) ) ς k 1 E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) η 2 ( κ ) ζ 1 ( κ ) f ( κ ) g ( κ ) α ( κ ) d κ .
Now by using k-fractional integral operator, we get
α k Z σ f 2 ( x ; p ) α k Z σ ( ζ 2 f g / η 1 ) ( x ; p )
and
α k Z ς g 2 ( x ; p ) α k Z ς ( η 2 f g / ζ 1 ) ( x ; p ) .
Multiplying (28) with (29), we obtain (25). □
Corollary 3.
If ζ 1 = u , ζ 2 = U , η 1 = v and η 2 = V , then we have
α k Z σ f 2 ( x ; p ) α k Z ς g 2 ( x ; p ) α k Z σ f g ( x ; p ) α k Z ς f g ( x ; p ) U V u v .
Remark 6.
In Theorem 3, for α ( x ) = x and k = 1 , we get [14] (Theorem 3), for α ( x ) = x , k = 1 , ϑ = p = 0 (and a = 0 ), we get [10] (Lemma 3.4).
The Chebyshev type inequalities for generalized k-fractional integral operators are given as follows:
Theorem 4.
Under the assumptions of Theorem 1 with ς > 0 , we have
χ σ ( x ; p ) α k Z ς f g ( x ; p ) + χ ς ( x ; p ) α k Z σ f g ( x ; p ) α k Z σ f ( x ; p ) α k Z ς g ( x ; p ) α k Z σ g ( x ; p ) α k Z ς f ( x ; p ) G σ , ς ( f , ζ 1 , ζ 2 ) ( x ; p ) + G ς , σ ( f , ζ 1 , ζ 2 ) ( x ; p ) 1 2 × G σ , ς ( g , η 1 , η 2 ) ( x ; p ) + G ς , σ ( g , η 1 , η 2 ) ( x ; p ) 1 2 ,
where
G σ , ς ( m , n , o ) ( x ; p ) = χ ς ( x ; p ) α k Z σ ( n + o ) m ( x ; p ) 2 4 α k Z σ n o ( x ; p ) α k Z σ m ( x ; p ) α k Z ς m ( x ; p ) .
Proof. 
Let f and g be two positive and integrable functions on [ 0 , ) . For τ , κ [ a , x ] with x > a , we define A ( τ , κ ) as
A ( τ , κ ) = ( f ( τ ) f ( κ ) ) ( g ( τ ) g ( κ ) ) ,
which imply
A ( τ , κ ) = f ( τ ) g ( τ ) + f ( κ ) g ( κ ) f ( τ ) g ( κ ) f ( κ ) g ( τ ) .
Multiplying (32) with ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) α ( τ ) α ( κ ) and integrating, we get
a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ϑ ( α ( x ) α ( κ ) ) θ ; p A ( τ , κ ) α ( τ ) α ( κ ) d τ d κ .
Now by using k-fractional integral operator, we get
χ ς ( x ; p ) α k Z σ f g ( x ; p ) + χ σ ( x ; p ) α k Z ς f g ( x ; p ) α k Z σ f ( x ; p ) α k Z ς g ( x ; p ) α k Z ς f ( x ; p ) α k Z σ g ( x ; p ) .
By using Cauchy-Schwartz inequality, we have
a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) A ( τ , κ ) α ( τ ) α ( κ ) d τ d κ a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) f 2 ( τ ) α ( τ ) α ( κ ) d τ d κ + a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) f 2 ( κ ) α ( τ ) α ( κ ) d τ d κ 2 a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) f ( τ ) f ( κ ) α ( τ ) α ( κ ) d τ d κ 1 2 × a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) g 2 ( τ ) α ( τ ) α ( κ ) d τ d κ + a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) g 2 ( κ ) α ( τ ) α ( κ ) d τ d κ 2 a x a x ( α ( x ) α ( τ ) ) σ k 1 ( α ( x ) α ( κ ) ) ς k 1 E σ k ( ϑ ( α ( x ) α ( τ ) ) θ ; p ) × E ς k ( ϑ ( α ( x ) α ( κ ) ) θ ; p ) g ( τ ) g ( κ ) α ( τ ) α ( κ ) d τ d κ 1 2 χ ς ( x ; p ) α k Z σ f 2 ( x ; p ) + χ σ ( x ; p ) α k Z ς f 2 ( x ; p ) 2 α k Z σ f ( x ; p ) α k Z ς f ( x ; p ) 1 2 × χ ς ( x ; p ) α k Z σ g 2 ( x ; p ) + χ σ ( x ; p ) α k Z ς g 2 ( x ; p ) 2 α k Z σ g ( x ; p ) α k Z ς g ( x ; p ) 1 2 .
By taking η 1 ( t ) = η 2 ( t ) = g ( t ) = 1 in Theorem 1, we get the following inequality:
α k Z σ f 2 ( x ; p ) α k Z σ ( ζ 1 + ζ 2 ) f ( x ; p ) 2 4 α k Z σ ζ 1 ζ 2 ( x ; p ) .
This implies
χ ς ( x ; p ) α k Z σ f 2 ( x ; p ) α k Z σ f ( x ; p ) α k Z ς f ( x ; p ) χ ς ( x ; p ) α k Z σ ( ζ 1 + ζ 2 ) f ( x ; p ) 2 4 α k Z σ ζ 1 ζ 2 ( x ; p ) α k Z σ f ( x ; p ) α k Z ς f ( x ; p ) = G σ , ς ( f , ζ 1 , ζ 2 ) ( x ; p )
and
χ σ ( x ; p ) α k Z ς f 2 ( x ; p ) α k Z σ f ( x ; p ) α k Z ς f ( x ; p ) χ σ ( x ; p ) α k Z ς ( ζ 1 + ζ 2 ) f ( x ; p ) 2 4 α k Z ς ζ 1 ζ 2 ( x ; p ) α k Z σ f ( x ; p ) α k Z ς f ( x ; p ) = G ς , σ ( f , ζ 1 , ζ 2 ) ( x ; p ) .
Applying the same procedure for ζ 1 ( t ) = ζ 2 ( t ) = f ( t ) = 1 , we get the following inequalities:
χ ς ( x ; p ) α k Z σ g 2 ( x ; p ) α k Z σ g ( x ; p ) α k Z ς g ( x ; p ) G σ , ς ( g , η 1 , η 2 ) ( x ; p )
and
χ σ ( x ; p ) α k Z ς g 2 ( x ; p ) α k Z σ g ( x ; p ) α k Z ς g ( x ; p ) G ς , σ ( g , η 1 , η 2 ) ( x ; p ) .
Finally, considering (33) to (37), we arrive at the desired result in (30). □
Theorem 5.
Under the assumptions of Theorem 4, we have
χ σ ( x ; p ) α k Z σ f g ( x ; p ) α k Z σ f ( x ; p ) α k Z σ g ( x ; p ) G σ , σ ( f , ζ 1 , ζ 2 ) ( x ; p ) G σ , σ ( g , η 1 , η 2 ) ( x ; p ) 1 2 ,
where
G σ , σ ( m , n , o ) ( x ; p ) = χ σ ( x ; p ) α k Z σ ( n + o ) m ( x ; p ) 2 4 α k Z σ n o ( x ; p ) α k Z σ m ( x ; p ) α k Z σ m ( x ; p ) .
Proof. 
By taking σ = ς in (30), we get the inequality (38). □
Corollary 4.
If ζ 1 = u , ζ 2 = U , η 1 = v and η 2 = V , then we have
χ σ ( x ; p ) α k Z σ f g ( x ; p ) α k Z σ f ( x ; p ) α k Z σ g ( x ; p )
( U u ) ( V v ) 4 u U v V α k Z σ f ( x ; p ) α k Z σ g ( x ; p ) .
Remark 7.
In Theorem 4 and Theorem 5, for α ( x ) = x and k = 1 , we get [14] (Theorem 4, Corollary 4), for α ( x ) = x , k = 1 , ϑ = p = 0 (and a = 0 ), we get [10] (Theorem 3.6, Theorem 3.7).

4. Conclusions

We have proved some new Pólya-Szegö and Chebyshev type inequalities for generalized k-fractional integral operators involving Mittag-Leffler function in their kernels. The outcomes of this paper also provide a lot of Pólya-Szegö and Chebyshev type inequalities for several well-known fractional integral operators via parameter substitutions. The classical inequalities and results can be generalized by using the new k-fractional integral operators.

Author Contributions

Conceptualization, Z.Z.; G.F.; S.M.; K.N. and T.Y.; methodology, Z.Z.; G.F.; S.M.; K.N. and T.Y.; validation, G.F.; K.N. and T.Y.; writing—original draft preparation, G.F.; S.M. and K.N.; writing—review and editing, Z.Z.; G.F.; S.M.; K.N. and T.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research received funding support from the National Science, Research, and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank the referees for their valuable comments and helpful advice on our manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov. 1882, 2, 93–98. [Google Scholar]
  2. Hadamard, J. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl. 1893, 58, 171–215. [Google Scholar]
  3. Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
  4. Pólya, G.; Szegö, G. Aufgaben und Lehrsatze aus der Analysis; Springer: Berlin, Germany, 1925. [Google Scholar]
  5. Petrović, M. Sur une fontionnelle. Publ. Math. Univ. Belgrade 1932, 1, 146–149. [Google Scholar]
  6. Grüss, G. Über das maximum des absolten Betrages von 1 b a b a f ( x ) g ( x ) d x 1 b a 2 f ( x ) d x b a f ( x ) d x . Math. Z. 1935, 39, 215–226. [Google Scholar] [CrossRef]
  7. Ostrowski, A. Uber die Absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
  8. Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Appl. Math. 2009, 10, 1–12. [Google Scholar]
  9. Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
  10. Ntouyas, S.K.; Agarwal, P.; Tariboon, J. On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 2016, 10, 491–504. [Google Scholar] [CrossRef]
  11. Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
  12. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  13. Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some new Riemann-Liouville fractional integral inequalities. Int. J. Math. Math. Sci. 2014, 2014, 6. [Google Scholar] [CrossRef] [Green Version]
  14. Andrić, M.; Farid, G.; Mehmood, S.; Pečarić, J. Pólya-Szegö and Chebyshev types inequalities via an extended generalized Mittag-Leffler function. Math. Ineq. Appl. 2019, 22, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
  15. Butt, S.I.; Akdemir, A.O.; Bhatti, M.Y.; Nadeem, M. New refinements of Chebyshev-Pólya-Szegö-type inequalities via generalized fractional integral operators. J. Inequal. Appl. 2020, 2020, 157. [Google Scholar] [CrossRef]
  16. Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a type Riemann-Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
  17. Deniz, E.; Akdemir, A.O.; Yüksel, E. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AMIS Math. 2020, 5, 956–965. [Google Scholar] [CrossRef]
  18. Farid, G.; Rehman, A.U.; Mishra, V.N.; Mehmood, S. Fractional integral inequalities of Grüss type via generalized Mittag-Leffler function. Int. J. Anal. Appl. 2019, 17, 548–558. [Google Scholar]
  19. Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. Pólya-Szegö and Chebyshev types inequalities via generalized k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 125. [Google Scholar] [CrossRef]
  20. Wang, G.; Agarwal, P.; Chand, M. Certain Grüss type inequalities involving the generalized fractional integral operator. J. Inequal. Appl. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
  21. Dragomir, S.S.; Diamond, N.T. Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results. East Asian Math. J. 2003, 19, 27–39. [Google Scholar]
  22. Agarwal, P. Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 2017, 40, 3882–3891. [Google Scholar] [CrossRef]
  23. Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
  24. Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k,h)-Riemann-Liouville fractional integral. New Trends Math. Sci. 2016, 4, 138–146. [Google Scholar] [CrossRef]
  25. Andrić, M.; Farid, G.; Pečarić, J. Analytical Inequalities for Fractional Calculus Operators and the Mittag-Leffler Function; Element: Zagreb, Croatia, 2021. [Google Scholar]
  26. Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
  27. Habib, S.; Mubeen, S.; Naeem, M.N. Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Func. 2018, 9, 53–65. [Google Scholar]
  28. Kwun, Y.C.; Farid, G.; Latif, N.; Nazeer, W.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
  29. Mehmood, S.; Farid, G.; Khan, K.A.; Yussouf, M. New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h,m)-convex function. Eng. Appl. Sci. Lett. 2020, 3, 9–18. [Google Scholar] [CrossRef]
  30. Khan, T.U.; Khan, M.A. Generalized conformable fractional operators. J. Comput. Appl. Math. 2019, 346, 378–389. [Google Scholar] [CrossRef]
  31. Che, Y.; Keir, M.Y.A. Study on the training model of football movement trajectory drop point based on fractional differential equation. Appl. Math. Nonlinear Sci. 2021, 1–6. [Google Scholar] [CrossRef]
  32. Farid, G. A unified integral operator and further its consequences. Open J. Math. Anal. 2020, 4, 1–7. [Google Scholar] [CrossRef]
  33. Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
  34. Man, S.; Yang, R. Educational reform informatisation based on fractional differential equation. Appl. Math. Nonlinear Sci. 2021, 1–10. [Google Scholar] [CrossRef]
  35. Zhao, N.; Yao, F.; Khadidos, A.O.; Muwafak, B.M. The impact of financial repression on manufacturing upgrade based on fractiona Fourier transform and probability. Appl. Math. Nonlinear Sci. 2021, 1–11. [Google Scholar] [CrossRef]
  36. Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
  37. Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
  38. Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
  39. Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
  40. Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  41. Kilbas, A.A.; Srivastava, H.M. Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
  42. Sarikaya, M.Z.; Dahmani, M.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
  43. Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhang, Z.; Farid, G.; Mehmood, S.; Nonlaopon, K.; Yan, T. Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities. Fractal Fract. 2022, 6, 90. https://doi.org/10.3390/fractalfract6020090

AMA Style

Zhang Z, Farid G, Mehmood S, Nonlaopon K, Yan T. Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities. Fractal and Fractional. 2022; 6(2):90. https://doi.org/10.3390/fractalfract6020090

Chicago/Turabian Style

Zhang, Zhiqiang, Ghulam Farid, Sajid Mehmood, Kamsing Nonlaopon, and Tao Yan. 2022. "Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities" Fractal and Fractional 6, no. 2: 90. https://doi.org/10.3390/fractalfract6020090

Article Metrics

Back to TopTop