A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators
Abstract
:1. Introduction
2. Preliminaries
- (a)
- is strongly continuous and , ∀ and .
- (b)
- For , , and
3. Integrodifferential System
3.1. Controllability Results through the Fixed Point Theorem
3.2. Controllability Results without the Use of the Fixed Point Theorem
4. Sobolev-Type Integrodifferential System
4.1. Controllability Results through the Fixed Point Theorem
- A and K are closed linear operators.
- and K is bijective.
- is continuous.
4.2. Controllability Results without the Use of the Fixed Point Theorem
5. Examples
5.1. Integrodifferential System
5.2. Sobolev-Type Integrodifferential System
5.3. Filter System
- Product modulator (PM) 1 receives the input A, , and presents the output as .
- In the same way, PM 2 receives , E, and presents .
- PM 3 receives , B and presents .
- PM 4 receives and at time , and presents .
- The integrators executed the integral of , over .
- Inputs , E are mixed and multiplied with an integrator output over .
- In the same way, , B are mixed and multiplied with an integrator output over .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; dos Santos, J.P.C.; Cuevas, C. Analytic resolvent operator and existence results for fractional integro-differential equations. J. Abstr. Differ. Equ. Appl. 2012, 2, 26–47. [Google Scholar]
- Balasubramaniam, P.; Tamilalagan, P. Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. Appl. Math. Comput. 2015, 256, 232–246. [Google Scholar] [CrossRef]
- dos Santos, J.P.C.; Cuevas, C.; de Andrade, B. Existence results for a fractional equation with state-dependent delay. Adv. Differ. Equ. 2011, 2011, 642013. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, J.P.C.; Arjunan, M.M.; Cuevas, C. Existence results for fractional neutral integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1275–1283. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, J.P.C.; Vijayakumar, V.; Murugesu, R. Existence of mild solutions for nonlocal Cauchy problem for fractional neutral integro-differential equation with unbounded delay. Commun. Math. Anal. 2013, 14, 59–71. [Google Scholar]
- Fernandez, S.B.; Nieto, J.J. Basic control theory for linear fractional differential equations with constant coefficients. Front. Phys. 2020, 8, 377. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On the fractional deformation of a linearly elastic bar. J. Mech. Behav. Mater. 2020, 29, 9–18. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On fractional bending of beams. Arch. Appl. Mech. 2016, 86, 1133–1145. [Google Scholar] [CrossRef]
- Ravichandran, C.; Valliammal, N.; Nieto, J.J. New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces. J. Frankl. Inst. 2019, 356, 1535–1565. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Anthoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
- Sidhardh, S.; Patnaik, S.; Semperlotti, F. Geometrically nonlinear response of a fractional-order nonlocal model of elasticity. Int. J.-Non-Linear Mech. 2020, 125, 103529. [Google Scholar] [CrossRef]
- Stempin, P.; Sumelka, W. Space-fractional Euler–Bernoulli beam model—Theory and identification for silver nanobeam bending. Int. J. Mech. Sci. 2020, 186, 105902. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional control systems of order α∈(1,2] with infinite delay. Mediterr. J. Math. 2016, 13, 2539–2550. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of fractional semilinear stochastic system of order α∈(1,2]. J. Dyn. Control Syst. 2017, 23, 679–691. [Google Scholar] [CrossRef]
- Sukavanam, N.; Kumar, S. Approximate controllability of fractional order semilinear delay systems. J. Optim. Theory Appl. 2011, 151, 373–384. [Google Scholar] [CrossRef]
- Sumelka, W.; Blaszczyk, T.; Liebold, C. Fractional Euler-Bernoulli beams: Theory, numerical study and experimental validation. Eur. J. Mech.-A/Solids 2015, 54, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, V. Approximate controllability results for analytic resolvent integro-differential inclusions in Hilbert spaces. Int. J. Control 2018, 91, 204–214. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Ravichandran, C.; Murugesu, R. Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. Surv. Math. Its Appl. 2014, 9, 117–129. [Google Scholar]
- Yan, Z. Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Control 2012, 85, 1051–1062. [Google Scholar] [CrossRef]
- Agarwal, S.; Bahuguna, D. Existence of solutions to Sobolev-type partial neutral differential equations. J. Appl. Math. Stoch. Anal. 2006, 2006, 16308. [Google Scholar] [CrossRef] [Green Version]
- Brill, H. A semilinear Sobolev evolution equation in Banach space. J. Differ. Equ. 1977, 24, 412–425. [Google Scholar] [CrossRef] [Green Version]
- Lightbourne, J.H.; Rankin, S. A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 1983, 93, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Desch, W.; Grimmer, R.; Schappacher, W. Some considerations for Linear integrodifferential equations. J. Math. Anal. Appl. 1984, 104, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Grimmer, R. Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 1982, 273, 333–349. [Google Scholar] [CrossRef]
- Grimmer, R.; Pritchard, A.J. Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. 1983, 50, 234–259. [Google Scholar] [CrossRef] [Green Version]
- Grimmer, R.; Prüss, J. On linear Volterra equations in Banach spaces. Comput. Math. Appl. 1985, 11, 189–205. [Google Scholar] [CrossRef] [Green Version]
- Grimmer, R.; Miller, R. Existence, uniqueness, and continuity for integral equations in a Banach space. J. Math. Anal. Appl. 1977, 57, 429–447. [Google Scholar] [CrossRef] [Green Version]
- Mahmudov, N.I.; Denker, A. On controllability of linear stochastic systems. Int. J. Control 2000, 73, 144–151. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal. Theory Methods Appl. 2008, 68, 536–546. [Google Scholar] [CrossRef]
- Nisar, K.S.; Vijayakumar, V. Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. 2021, 44, 13615–13632. [Google Scholar] [CrossRef]
- Pierri, M.; O’Regan, D.; Prokopczyk, A. On recent developments treating the exact controllability of abstract control problems. Electron. J. Differ. Equ. 2016, 2016, 1–9. [Google Scholar]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional control systems of order α∈(1,2]. In Proceedings of the 2015 Proceedings of the Conference on Control and its Applications (CT), Paris, France, 8–10 July 2015; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Patel, R. Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. 2021, 65, 861–875. [Google Scholar] [CrossRef]
- Naito, K. Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 1987, 25, 715–722. [Google Scholar] [CrossRef]
- Sukavanam, N.; Kumar, M. S-controllability of an abstract first order semilinear control system. Numer. Funct. Anal. Optim. 2010, 31, 1023–1034. [Google Scholar] [CrossRef]
- Sukavanam, N.; Tafesse, S. Approximate controllability of a delayed semilinear control system with growing nonlinear term. Nonlinear Anal. 2011, 74, 6868–6875. [Google Scholar] [CrossRef]
- Zahoor, S.; Naseem, S. Design and implementation of an efficient FIR digital filter. Cogent Eng. 2017, 4, 1323373. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayakumar, V.; Nisar, K.S.; Chalishajar, D.; Shukla, A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal Fract. 2022, 6, 73. https://doi.org/10.3390/fractalfract6020073
Vijayakumar V, Nisar KS, Chalishajar D, Shukla A, Malik M, Alsaadi A, Aldosary SF. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal and Fractional. 2022; 6(2):73. https://doi.org/10.3390/fractalfract6020073
Chicago/Turabian StyleVijayakumar, Velusamy, Kottakkaran Sooppy Nisar, Dimplekumar Chalishajar, Anurag Shukla, Muslim Malik, Ateq Alsaadi, and Saud Fahad Aldosary. 2022. "A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators" Fractal and Fractional 6, no. 2: 73. https://doi.org/10.3390/fractalfract6020073
APA StyleVijayakumar, V., Nisar, K. S., Chalishajar, D., Shukla, A., Malik, M., Alsaadi, A., & Aldosary, S. F. (2022). A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal and Fractional, 6(2), 73. https://doi.org/10.3390/fractalfract6020073