Robust Stability of Fractional Order Memristive BAM Neural Networks with Mixed and Additive Time Varying Delays
Abstract
:1. Introduction
- (1)
- The proposed memristive BAM neural networks model contains mixed and additive time-varying delays.
- (2)
- The proposed main proofs are proved with the some effective analytical techniques.
- (3)
- A new sufficient criterion is derived in terms of LMI, which can be effectively solved in the LMI MATLAB toolbox.
- (4)
- Finally, we provide a numerical example.
2. Preliminaries
3. Main Results
4. Illustrative Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Heaviside, O. Electromagnetic Theory; Chelsea: New York, NY, USA, 1971. [Google Scholar]
- Ma, W.; Li, C.; Wu, Y.; Wu, Y. Adaptive synchronization of fractional neural networks with unknown parameters and time delays. Entropy 2014, 16, 6286–6299. [Google Scholar] [CrossRef]
- Koeller, R.C. Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Bagley, R.L.; Calico, R.A. Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 1991, 14, 304–311. [Google Scholar] [CrossRef]
- Hartley, T.T.; Lorenzo, C.F. Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 2002, 29, 201–233. [Google Scholar] [CrossRef]
- Ahmeda, E.; Elgazzar, A.S. On fractional order differential equations model for nonlocal epidemics. Phys. A Stat. Mech. Its Appl. 2007, 379, 607–614. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Existence results for fractional functional differential inclusions with infinite delay and applications to control theory. Fract. Calc. Appl. Anal. 2008, 11, 35–56. [Google Scholar]
- Zhang, Z.; Cao, J.; Zhou, D. Novel LMI-based condition on global asymptotic stability for a class of Cohen-Grossberg BAM networks with extended activation functions. IEEE Trans. Neural Netw. Learn Syst. 2014, 25, 1161–1172. [Google Scholar]
- Ji, H.; Zhang, H.; Senping, T. Reachable set estimation for inertial Markov jump BAM neural network with partially unknown transition rates and bounded disturbances. J. Franklin Inst. 2017, 354, 7158–7182. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Y.; Xu, X.; Li, L. Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput. Appl. 2012, 28, 345–352. [Google Scholar] [CrossRef]
- Kosko, B. Bidirectional associative memories. IEEE Trans. Syst. Cybern. 1998, 18, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Hymavathi, M.; Rajchakit, G.; Sumit, S.; Palanisamy, L.; Porpattama, H. Synchronization of Fractional Order Fuzzy BAM Neural Networks With Time Varying Delays and Reaction Diffusion Terms. IEEE Access 2020, 8, 186551–186571. [Google Scholar] [CrossRef]
- Yang, W.; Yu, W.; Cao, J.; Alsaadi, F.E.; Hayat, T. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses. Neural Netw. 2018, 98, 122–153. [Google Scholar] [CrossRef]
- Kosko, B. Adaptive bidirectional associative memories. Appl. Opt. 1987, 26, 4947–4960. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Xu, C.J. Existence and exponential stability of anti-periodic solutions in bidirectional associative memory neural networks with distributed delays. J. Comput. Theor. Nanosci. 2016, 13, 964–970. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, L. Functional diferential inclusions and dynamic behaviors for memristor-based BAM neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1279–1300. [Google Scholar] [CrossRef]
- Wang, W.; Yu, M.; Luo, X.; Liu, L.; Yuan, M.; Zhao, W. Synchronization of memristive BAM neural networks with leakage delay and additive time-varying delay components via sampled-data control. Chaos Solit Fractals 2017, 104, 84–97. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Rihan, F.; Lakshmanan, S.; Rakkiyappan, R.; Muthukumar, P. Synchronization of memristor-based delayed BAM neural networks with fractional-order derivatives. Complexity 2016, 21, 412–426. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, S.; Lei, H. Delay-Dependent Stability Analysis for Neural Networks with Two Additive Time-Varying Delay Components. In Proceedings of the 2012 International Conference on Computer Science and Service System, Nanjing, China, 11–13 August 2012; pp. 2181–2184. [Google Scholar]
- Cao, J. Global asymptotic stability of delayed bidirectional memory neural networks. Appl. Math. Comput. 2003, 142, 333–339. [Google Scholar]
- Shao, H.; Han, Q. New delay-dependent stability criteria for neural networks with two additive time-varying delay components. IEEE Trans. Neural Netw. 2011, 22, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Gao, H.; Wang, C. Stability analysis for continuous systems with two additive time-varying delay components. Syst. Control Lett. 2007, 56, 16–24. [Google Scholar] [CrossRef]
- Gao, H.; Chen, T.; Lam, J. A new delay system approach to network-based control. Automatica 2008, 44, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.Y.; Cui, B.T. Stochastic exponential stability for Markovian jumping BAM neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern. B 2007, 37, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, S.; Guo, Z.; Huang, T.; Wen, S. Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control. Neural Netw. 2019, 119, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, J.; Yan, Z. Global exponential synchronization of two memristor-based recurrent neural networks with time delays via static or dynamic coupling. IEEE Trans. Syst. Manand Cybern. 2015, 45, 235–249. [Google Scholar] [CrossRef]
- Xiong, L.L.; Zhang, H.Y.; Li, Y.K.; Liu, Z.X. Improved stability and H infinity performance for neutral systems with uncertain Markovian jump. Nonlinear-Anal.-Hybrid Syst. 2016, 19, 13–25. [Google Scholar] [CrossRef]
- Cao, J.; Chen, T. Globally exponentially robust stability and periodicity of delayed neural networks. Chaos Solut. Fractals 2004, 22, 957–963. [Google Scholar] [CrossRef]
- Ensari, T.; Arik, S. New results for robust stability of dynamical neural networks with discrete time delays. Expert Syst. Appl. 2010, 37, 5925–5930. [Google Scholar] [CrossRef]
- Li, X.; She, K.; Zhong, S.; Shi, K.; Kang, W.; Cheng, J.; Yu, Y. Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays. Appl. Math. Comput. 2018, 325, 271–290. [Google Scholar] [CrossRef]
- Lakshmanan, S.; Balasubramaniam, P. New results of robust stability analysis for neutral-type neural networks with time-varying delays and Markovian jumping parameters. Can. J. Phys. 2011, 89, 827–840. [Google Scholar] [CrossRef]
- Yu, H.; Wu, H. Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions. J. Math. Sci. 2012, 187, 511–523. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Vembarasan, V.; Rakkiyappan, R. Delay-dependent robust asymptotic state estimation of TakagiSugeno fuzzy Hopfield neural networks with mixed interval time-varying delays. Expert Syst. Appl. 2012, 39, 472–481. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Vembarasan, V.; Rakkiyappan, R. Global robust asymptotic stability analysis of uncertain switched Hopfield neural networks with time delay in the leakage term. Neural Comput. Appl. 2012, 21, 1593–1616. [Google Scholar] [CrossRef]
- Li, T.; Guo, L.; Lin, C. A new criterion of delay-dependent stability for uncertain time-delay systems. IET Control Theory Appl. 2007, 1, 611–616. [Google Scholar] [CrossRef]
- Zhou, S.; Li, T.; Shao, H.Y.; Zheng, W.X. Output feedback H∞ control for uncertain discrete-time hyperbolic fuzzy systems. Eng. Appl. Artif. Intell. 2006, 19, 487–499. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Syed Ali, M.; Hymavathi, M.; Priya, B.; Asma Kauser, S.; Kumar Thakur, G. Stability analysis of stochastic fractional-order competitive neural networks with leakage delay. AIMS Math. 2021, 6, 3205–3241. [Google Scholar] [CrossRef]
- Syed Ali, M.; Hymavathi, M.; Sibel, S.; Vineet, S.; Sabri, A. Global Asymptotic Synchronization of Impulsive Fractional-Order Complex-Valued Memristor-Based Neural Networks with Time Varying Delays. Commun. Innonlinear Sci. Numer. Simul. 2019, 78, 104869. [Google Scholar] [CrossRef]
- Jackubovic, V.A. The S-procedure in nonlinear control theory. Vetnik Leningrad Univ. Math. 1977, 4, 73–93. [Google Scholar]
- Syed Ali, M.; Hymavathi, M. Synchronization of Fractional Order Neutral Type Fuzzy Cellular Neural Networks with Discrete and Distributed Delays via State Feedback Control. Neural Process. Lett. 2021, 53, 925–957. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Hymavathi, M.; Sanober, S.; Dhupia, B.; Syed Ali, M. Robust Stability of Fractional Order Memristive BAM Neural Networks with Mixed and Additive Time Varying Delays. Fractal Fract. 2022, 6, 62. https://doi.org/10.3390/fractalfract6020062
Han X, Hymavathi M, Sanober S, Dhupia B, Syed Ali M. Robust Stability of Fractional Order Memristive BAM Neural Networks with Mixed and Additive Time Varying Delays. Fractal and Fractional. 2022; 6(2):62. https://doi.org/10.3390/fractalfract6020062
Chicago/Turabian StyleHan, Xiuping, M. Hymavathi, Sumaya Sanober, Bhawna Dhupia, and M. Syed Ali. 2022. "Robust Stability of Fractional Order Memristive BAM Neural Networks with Mixed and Additive Time Varying Delays" Fractal and Fractional 6, no. 2: 62. https://doi.org/10.3390/fractalfract6020062
APA StyleHan, X., Hymavathi, M., Sanober, S., Dhupia, B., & Syed Ali, M. (2022). Robust Stability of Fractional Order Memristive BAM Neural Networks with Mixed and Additive Time Varying Delays. Fractal and Fractional, 6(2), 62. https://doi.org/10.3390/fractalfract6020062