Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks
Abstract
:1. Introduction
- (1)
- We extend competitive neural networks with different time scales to bidirectional associative memory neural networks with different time scales and proposed a double-layer uncertain BAM competitive neural network.
- (2)
- The uncertainty BAM competitive neural networks are introduced for the first time.
- (3)
- We constructed novel Lyapunov–Krasovskii functionals and applied inequality techniques to achieve synchronization of the considered systems.
- (4)
- The derived conditions are expressed in terms of linear matrix inequalities (LMIs), which can be checked numerically very efficiently via the LMI toolbox.
- (5)
- Lastly, numerical results are given to show the effectiveness of the proposed results.
2. Preliminaries
3. Mian Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yildiz, T.; Jajarmi, A.; Yildiz, B.; Baleanu, D. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discret. Contin. Dyn. Syst. 2020, 13, 407–428. [Google Scholar]
- Li, H.; Muhammadhaji, A.; Zhang, L.; Teng, Z. Stability analysis of a fractional-order predator prey model incorporating a constant prey refuge and feedback control. Adv. Differ. Equ. 2018, 2018, 325. [Google Scholar] [CrossRef]
- Zhao, K.; Deng, S. Existence and Ulam CHyers stability of a kind of fractional-order multiple point BVP involving non instantaneous impulses and abstract bounded operator. Adv. Differ. Equ. 2021, 2021, 44. [Google Scholar] [CrossRef]
- Ali, S.; Narayanan, G.; Sevgen, S.; Sheher, V.; Arik, S. Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104853. [Google Scholar]
- Wang, F.; Yang, Y.; Xu, X.; Li, L. Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput. Appl. 2017, 28, 345–352. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Xue, S.; Niu, P. Quasi-uniform stability of Caputo-type fractional-order neural networks with mixed delay. Int. J. Mach. Learn. Cybern 2017, 8, 1501–1511. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Zeng, Z. Global uniform asymptotic fixed deviation stability and stability for delayed fractional-order memristive neural networks with generic memductance. Neural Netw. 2018, 98, 65–75. [Google Scholar] [CrossRef]
- Baskar, P.; Padmanabhan, S.; Ali, M.S. LMI based stability criterion for uncertain neutral-type neural networks with discrete and distributed delays. Control Cybern. 2020, 49, 77–97. [Google Scholar]
- Balasubramaniam, P.; Ali, M.S. Robust exponential stability of uncertain fuzzy Cohen-Grossberg neural networks with time-varying delays. Fuzzy Sets Syst. 2010, 161, 608–618. [Google Scholar] [CrossRef]
- Ali, M.S.; Balasubramaniam, P. Stability analysis of uncertain fuzzy Hopfield neural networks with time delays. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2776–2783. [Google Scholar]
- Ali, M.S.; Saravanakumar, R. Novel delay-dependent robust H∞ control of uncertain systems with distributed time-varying delays. Appl. Math. Comput. 2014, 249, 510–520. [Google Scholar]
- Zhao, K. Global robust exponential synchronization of BAM recurrent FNNs with infinite distributed delays and diffusion terms on time scales. Adv. Differ. Equ. 2014, 2014, 317. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, R.; Ali, M.S.; Huang, H.; Cao, J.; Joo, Y.H. Robust H∞ state-feedback control for nonlinear uncertain systems with mixed time-varying delays. Int. J. Control Autom. Syst. 2018, 16, 225–233. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Rajchakit, G.; Ali, M.S.; Xiang, Z.; Joo, Y.H. Robust extended dissipativity criteria for discrete-time uncertain neural networks with time-varying delays. Neural Comput. Appl. 2018, 30, 3893–3904. [Google Scholar] [CrossRef]
- Ali, M.S.; Hymavathi, M.; Senan, S.; Shekher, V.; Arik, S. Global asymptotic synchronization of impulsive fractional-order complex-valued memristor-based neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104869. [Google Scholar]
- Ali, M.S.; Hymavathi, M. Synchronization of fractional order neutral type fuzzy cellular neural networks with discrete and distributed delays via state feedback control. Neural Process. Lett. 2021, 53, 929–957. [Google Scholar] [CrossRef]
- Abdurahman, A.; Jiang, H.; Teng, Z. Lag synchronization for Cohen-Grossberg neural networks with mixed time delays via periodically intermittent control. Int. J. Comput. Math. 2013, 94, 275–295. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X.; Li, X. Sampled-data based lag synchronization of chaotic delayed neural networks with impulsive control. Nonlinear Dyn. 2017, 90, 2199–2207. [Google Scholar] [CrossRef]
- Ali, M.S.; Hymavathi, M.; Rajchakit, G.; Saroha, S.; Palanisamy, L. Synchronization of fractional order fuzzy BAM neural networks with time varying delays and reaction diffusion terms. IEEE Access 2020, 8, 186551–186571. [Google Scholar] [CrossRef]
- Meyer-Base, A.; Pilyugin, S.S.; Wismler, A.; Foo, S. Local exponential stability of competitive neural networks with different time scales. Eng. Appl. Artif. Intell. 2004, 17, 227–232. [Google Scholar] [CrossRef]
- Meyer-Base, A.; Thummler, V. Local and global stability of an unsupervised competitive neural network. IEEE Trans. Neural Netw. 2008, 18, 346–351. [Google Scholar] [CrossRef]
- Ali, M.S.; Hymavathi, M.; Priya, B.; Kauser, S.A.; Thakur, G.K. Stability analysis of stochastic fractional-order competitive neural networks with leakage delay 2021, 6, 3205–3241. AIMS Math. 2021, 6, 3205–3241. [Google Scholar]
- Tan, Y.; Jing, K. Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 2016, 39, 2821–2839. [Google Scholar] [CrossRef]
- Yang, X.; Cao, J.; Long, Y.; Rui, W. Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations. IEEE Trans. Neural Netw. 2010, 21, 1656–1667. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.P.; Nie, X.B.; Liang, J.L.; Cao, J.D. Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions. Neural Comput. Appl. Neural Netw. 2018, 108, 452–465. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, M.L.; Cao, J.D.; Alsaedi, A. Synchronization control of Riemann-Liouville fractional competitive network systems with time-varying delay and different time scales. Int. J. Control Autom. Syst. 2018, 16, 1404–1414. [Google Scholar] [CrossRef]
- Kosko, B. Adaptive bidirectional associative memories. Appl. Opt. 1987, 26, 4947–4960. [Google Scholar] [CrossRef] [Green Version]
- Tavan, P.; Grubmuller, H.; Kuhnel, H. Self-organization of associative memory and pattern classification: Recurrent signal processing on topological feature maps. Biol. Cybern. 1990, 64, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Ray, A.K.; Sharma, S.; Shukla, K.K.; Pradhan, S.; Aggarwal, L.M. Segmentation and classification of medical images using texture-primitive features: Application of BAM-type artificial neural network. J. Med. Phys. 2008, 33, 119–126. [Google Scholar] [CrossRef]
- Carpenter, A.; Grossberg, S. Pattern recognition by self organizing neural networks. In Applied Optics; MIT Press: Cambridge, UK, 1991. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Feckan, M.; Zhou, Y.; Wang, J. On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3050–3060. [Google Scholar] [CrossRef]
- Ye, H.P.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yu, Y.; Yu, J. LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. 2017, 28, 2423–2433. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnam, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadephia, PA, USA, 1994. [Google Scholar]
- Zhao, K.; Ma, Y. Study on the Existence of Solutions for a Class of Nonlinear Neutral Hadamard-Type Fractional Integro-Differential Equation with Infinite Delay. Fractal Fract. 2021, 5, 52. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed Ali, M.; Hymavathi, M.; Kauser, S.A.; Rajchakit, G.; Hammachukiattikul, P.; Boonsatit, N. Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks. Fractal Fract. 2022, 6, 14. https://doi.org/10.3390/fractalfract6010014
Syed Ali M, Hymavathi M, Kauser SA, Rajchakit G, Hammachukiattikul P, Boonsatit N. Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks. Fractal and Fractional. 2022; 6(1):14. https://doi.org/10.3390/fractalfract6010014
Chicago/Turabian StyleSyed Ali, M., M. Hymavathi, Syeda Asma Kauser, Grienggrai Rajchakit, Porpattama Hammachukiattikul, and Nattakan Boonsatit. 2022. "Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks" Fractal and Fractional 6, no. 1: 14. https://doi.org/10.3390/fractalfract6010014
APA StyleSyed Ali, M., Hymavathi, M., Kauser, S. A., Rajchakit, G., Hammachukiattikul, P., & Boonsatit, N. (2022). Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks. Fractal and Fractional, 6(1), 14. https://doi.org/10.3390/fractalfract6010014