Sequential Caputo–Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces
Abstract
:1. Introduction
- (A1)
- The function is continuous.
- (A2)
- There exists nondecreasing functions :
- (A3)
- There exists the function :
2. Auxiliary Results
3. Main Results
3.1. Uniqueness Via Contraction Mapping Principle
3.2. Existence via Krasnoselkii’s Theorem
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmed, E.M.; El-Saka, H.A. On A Fractional Order Study Of Middle East Respiratory Syndrome Corona Virus (MERS-COV). J. Fract. Calc. Appl. 2017, 8, 118–126. [Google Scholar]
- Kurakula, S.; Sankar Rao, V.; Mankena, R. The development of fixed point theory-Review. Int. J. Adv. Eng. Res. Dev. 2018, 5, 1–3. [Google Scholar]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. 1968, 60, 71–76. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Wang, X.; Lu, L.; Liang, J. Multiple solutions of nonlinear fractional impulsive integro-differential equations with nonlinear boundary conditions. Math. Slovaca. 2016, 66, 1105–1114. [Google Scholar] [CrossRef]
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 2016, 21, 661–681. [Google Scholar]
- Gohar, M.; Li, C.; Yin, C. On Caputo–Hadamard fractional differential equations. Int. J. Comput. Math. 2020, 97, 1459–1483. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Z.; Wang, X. Solvability for a couple system of nonlinear fractional differential equations in a Banach space. Fract. Calc. Appl. Anal 2013, 16, 51–63. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, M. Fractional boundary value problems. Fract. Calc. Appl. Anal. 2022, 25, 29–59. [Google Scholar] [CrossRef]
- Karthikeyan, P. and Arul, R. Integral boundary value problems for implicit fractional differential equations involving Hadamard and Caputo-Hadamard fractional derivatives. Kragujev. J. Math. 2021, 45, 331–341. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Arul, R. Uniqueness and stability Results for non-local impulsive implicit hadamard fractional differential equations. J. Appl. Nonlinear Dyn. 2020, 9, 23–29. [Google Scholar] [CrossRef]
- Wang, G.T.; Wang, T.L. On a nonlinear Hadamard type fractional differential equation with pLaplacian operator and strip condition. J. Nonlinear Sci. Appl. 2016, 9, 5073–5081. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Hamidi, N.; Henderson, J. Caputo-Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 2018, 21, 1027–1045. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lazreg, J.E.; Zhou, Z. A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Soliton. Fract. 2017, 102, 47–71. [Google Scholar] [CrossRef]
- Wang, G.; Pei, K.; Chen, Y.Q. Stability analysis of nonlinear Hadamard fractional differential system. J. Franklin I. 2019, 356, 6538–6546. [Google Scholar] [CrossRef]
- Graef, J.R.; Grace, S.R.; Tunc, E. Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-Type Hadamard derivatives. Fract. Calc. Appl. Anal. 2017, 20, 71–87. [Google Scholar] [CrossRef]
- Awadalla, M.; Yameni, Y.Y.; Abuassba, K. A new Fractional model for the cancer treatment by radiotherapy using the Hadamard fractional derivative. OMJ 2019, 1, 1–12. [Google Scholar]
- Dokuyucu, M.A.; Celik, E.; Bulut, H.; Baskonus, H.M. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus. 2018, 133, 1–6. [Google Scholar] [CrossRef]
- Tariboon, J.; Cuntavepanit, A.; Ntouyas, S.K.; Nithiarayaphaks, W. Separated boundary value problems of sequential caputo and hadamard fractional differential equations. J. Funct. Spaces 2018, 1–9. [Google Scholar] [CrossRef]
- Malik, I.A.; Jalal, T. Application of measure of noncompactness to infinite systems of differential equations in p spaces. Rend. Circ. Mat. Palermo 2019, 2. [Google Scholar] [CrossRef]
- Alruwaily, Y.; Ahmad, B.; Ntouyas, S.K.; Alzaidi, A.S. Existence Results for Coupled Nonlinear Sequential Fractional Differential Equations with Coupled Riemann–Stieltjes Integro-Multipoint Boundary Conditions. Fractal Fract. 2022, 6, 123. [Google Scholar] [CrossRef]
- Etemad, S.; Ntouyas, S.K.; Ahmad, B.; Rezapour, S.; Tariboon, J. Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions. Mathematics 2022, 10, 2090. [Google Scholar] [CrossRef]
- Ahmad, B.; Albideewi, A.F.; Ntouyas, S.K.; Alsaedi, A. Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations. Cubo 2021, 23, 225–237. [Google Scholar] [CrossRef]
- Ahmad, B.; Alruwaily, Y.; Alsaedi, A.; Ntouyas, S.K. Sequential fractional differential equations with nonlocal integro-multipoint boundary conditions. Novi Sad J. Math. 2021, accepted. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Ahmad, B.; Alsaedi, A. Existence results for sequential Riemann–Liouville and Caputo fractional differential inclusions with generalized fractional integral conditions. Mathematics 2020, 8, 1044. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Shammakh, W. On more general boundary value problems involving sequential fractional derivatives. Adv. Differ. Equ. 2019, 2019, 1–25. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Aljoudi, S.; Ntouyas, S.K. A study of a fully coupled two-parameter system of sequential fractional integro-differential equations with nonlocal integro-multipoint boundary conditions. Acta Math. Sci. 2019, 39, 927–944. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions. J. King Saud Univ. Sci. 2019, 31, 184–193. [Google Scholar] [CrossRef]
- Derbazi, C. Nonlinear sequential Caputo and Caputo-Hadamard fractional differential equations with dirichlet boundary conditions in banach spaces. Kragujev. J. Math. 2022, 46, 841–855. [Google Scholar]
- Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. Aims Math. 2020, 5, 259–272. [Google Scholar]
- Ardjouni, A.; Djoudi, A. Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay. Appl. Math. E-Notes 2012, 12, 94–101. [Google Scholar]
- Ben Makhlouf, A.; El-Hady, E.S. Novel stability results for Caputo fractional differential equations. Math. Probl. Eng. 2021, 2021, 9817668. [Google Scholar] [CrossRef]
- El-hady, E.S.; Makhlouf, A.B. A novel stability analysis for the Darboux problem of partial differential equations via fixed point theory. AIMS Math. 2021, 6, 12894–12901. [Google Scholar] [CrossRef]
- El-hady, E.S.; Ben Makhlouf, A.; Boulaaras, S.; Mchiri, L. Ulam-Hyers-Rassias Stability of Nonlinear Differential Equations with Riemann-Liouville Fractional Derivative. J. Funct. Spaces 2022, 2022, 9817668. [Google Scholar] [CrossRef]
- Green, J.W.; Valentine, F.A. On the arzela-ascoli theorem. Math. Mag. 1961, 34, 199–202. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.-s. Sequential Caputo–Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces. Fractal Fract. 2022, 6, 730. https://doi.org/10.3390/fractalfract6120730
Arul R, Karthikeyan P, Karthikeyan K, Alruwaily Y, Almaghamsi L, El-hady E-s. Sequential Caputo–Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces. Fractal and Fractional. 2022; 6(12):730. https://doi.org/10.3390/fractalfract6120730
Chicago/Turabian StyleArul, Ramasamy, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Ymnah Alruwaily, Lamya Almaghamsi, and El-sayed El-hady. 2022. "Sequential Caputo–Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces" Fractal and Fractional 6, no. 12: 730. https://doi.org/10.3390/fractalfract6120730
APA StyleArul, R., Karthikeyan, P., Karthikeyan, K., Alruwaily, Y., Almaghamsi, L., & El-hady, E. -s. (2022). Sequential Caputo–Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces. Fractal and Fractional, 6(12), 730. https://doi.org/10.3390/fractalfract6120730