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Abstract: This paper discusses the optimal control issue for elliptic k × k cooperative fractional
systems. The fractional operators are proposed in the Laplace sense. Because of the nonlocality of
the Laplace fractional operators, we reformulate the issue as an extended issue on a semi-infinite
cylinder in Rk+1. The weak solution for these fractional systems is then proven to exist and be unique.
Moreover, the existence and optimality conditions can be inferred as a consequence.
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1. Introduction

Different areas of mathematics, including harmonic and operator theories, have found
nonlocal operators to be valuable for research. Additionally, they have attracted critical
attentiveness due to their close relationship to practical issues, as they are essential to
the modelling and simulation of complicated processes that take place over a variety of
length scales. Furthermore, the nonlocal operators have numerous applications in various
scientific scopes, including nonlocal continuum fields, porous media flow, fluids, science of
material, turbulence, control problems, optimization and image processing [1–4].

This article discusses the elliptic k× k cooperative fractional system that contains the
Laplace fractional operator (−∆)r, which is one of the nonlocal operators.

Suppose Ω ⊂ Rk is an open domain that is connected, bounded with the boundary
∂Ω, where k is an integer such that k ≥ 2, 0 < r < 1 and, as a consequence, k > 2r. Then,
we will investigate the following systems:

(−∆)rψi = ∑k
j=1 aij ψj + fi in Ω,

ψi = 0 in Rk\Ω,
∀i = 1, 2, 3, . . . , k,

(1)

where{ψi}k
i=1 are the states of the system and { fi}k

i=1 are the external sources. The systems
in Equation (1) are said to be cooperative if aij > 0 for i 6= j; otherwise, the systems are said
to be noncooperative.

Partial differential equations (PDEs) and their control have piqued the attention of re-
searchers in a wide range of disciplines, including biology, ecology, economics, engineering
and finance [5–9]. These findings have been used in both cooperative and noncoopera-
tive systems [10]. Compared with classical optimal control problems (OPCs), the study of
fractional-order control problems (FOPCs) is very recent. However, it is becoming more
well-known as a result of the significant roles that fractional differential equations (FDEs)
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play in physics, chemistry and engineering. Recent studies in various fields have shown
that FDEs are capable of properly describing the dynamics of a wide range of systems. For
example, viscoelasticity and heat transfer in memory materials, anomalous diffusion in
fractal media, nonlocal electrostatics and image processing are just a few of the complex
phenomena that may be studied by using FDEs to characterize their behavior [11–16]. There
have been several studies that represented FOPCs. In [17,18], the distributed OCPs were
covered for a system with a time fraction. These were followed by the derivation of the
optimality requirements. In [19], the optimality requirements were derived for a fractional
differential system with a Schrödinger operator. The harmonic extension approach was
used in [20–22] to turn a nonlocal system into a local one. As a consequence, the optimality
conditions were met.

It is commonly known that the fractional Laplace operator is nonlocal, which means
that when ξ approaches infinity, the values of ψ have an effect on the values of (−∆)αψ(ξ),
where ξ ∈ O. Additionally, the support of the fractional Laplace operator (−∆)α is non-
compact even when the support of ψ is compact. This fundamental flaw might lead to
various challenges. In fact, situations involving (−∆)α cannot be investigated using the
traditional local PDE techniques. For more details about nonlocal operators, see [23–25]. Caf-
farelli and Silvestre [26] showed that the fractional Laplace operator may be described as
an operator that converts a Dirichlet boundary condition to a Neumann-type condition by
employing an extension issue.

Let us assume C+ ⊂ Rk+1 is a semi-infinite cylinder

C+ = {(x, w) : x ∈ Rk, w ∈ (0, ∞)}, (2)

where w is a newly defined extended variable. As a result, the nonlocal systems in
Equation (1) is recast locally as follows:

∇.(wα∇Ψi) = 0 in C+,
Ψi(x, 0) = 0 in Rk\Ω,
1
sr

∂Ψi
∂ν = ( fi + ∑k

j=1 aijTrΩΨj) on Ω× {0},
(3)

where ∂Ψ
∂ν = − limw→0+ wα ∂Ψ(x,w)

∂w , α = 1− 2r, ν is the outer unit normal to C+ at Ω×
{0}, limw→∞ Ψ(x, w) = 0 and sr = 2α Γ(1−r)

Γ(r) > 0.
In this paper, the control problem for cooperative fractional systems is investigated.

There are a number of difficulties with the fractional Laplace operator since it is a nonlocal
operator. To get around this, we employ an extension method to convert the nonlocal
systems (Equation (1)) into local ones (Equation (3)). Then, the weak formulation is per-
formed. Hence, we utilize the lemma of Lax–Milgram to show that the weak solution for
the local systems exists and is unique. Furthermore, the optimality criteria for both local
and nonlocal systems are derived using the Lions approach. If r → 1 is employed, then the
derived results are identical to the classical findings.

The following is the structure of this paper. Section 2 describes several functional
spaces that can be used to model fractional cooperative systems and their expansions, as
well as the existence results. We explore the weak solution and optimality criteria for a
k× k cooperative fractional system in Section 3. A summary and discussion are provided
in the Section 4. Section 5 contains some possible lines for future research in this topic.

2. Preliminaries

In our work, we employ the variational formulation to achieve optimal control of a
cooperative system. Sobolev spaces are offered as the solution spaces to our problem as a
consequence. This section is divided into three subsections. In Section 2.1, some definitions
and the fractional Sobolev spaces are briefly explained. In Section 2.2, the weighted Sobolev
spaces and their properties are reviewed. The primary eigenvalue problem’s characteriza-
tions are described in Section 2.3.
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2.1. Fractional Sobolev Spaces

We define the fractional order Sobolev space for 0 < r < 1 [27] as

Hr(Ω) =

{
ψ ∈ L2(Ω) :

∫
Ω

∫
Ω

|ψ(x1)− ψ(x2)|2
|x1 − x2|k+2r dx1dx2 < ∞

}
, (4)

Hr
0(Ω) = {ψ ∈ Hr(Ω) : ψ = 0 on ∂Ω}, (5)

which are Hilbert spaces with the following norms:

‖ψ‖Hr(Ω) :=
(∫

Ω
|ψ|2dx +

∫
Ω

∫
Ω

|ψ(x1)− ψ(x2)|2
|x1 − x2|k+2r dx1dx2

) 1
2

, (6)

‖ψ‖Hr
0(Ω) :=

(∫
Ω

∫
Ω

|ψ(x1)− ψ(x2)|2
|x1 − x2|k+2r dx1dx2

) 1
2

, (7)

In addition, we define the Lion–Magenes space as follows [28]:

H
1
2
00(Ω) =

{
ψ ∈ H

1
2 (Ω) :

∫
Ω

ψ2(x)
d(x, ∂Ω)

dx < ∞
}

, (8)

where the distance between x and ∂Ω is d(x, ∂Ω). Combining Equations (4), (5) and (8)
yields the following fractional Sobolev space for every r ∈ (0, 1):

Hr(Ω) =


Hr(Ω); r ∈

(
0, 1

2

)
,

H1/2
00 (Ω); r = 1

2 ,
Hr

0(Ω); r ∈
(

1
2 , 1
)

.

(9)

Additionally, we designate by H−r(Ω) the dual space of Hr(Ω) in such a way that

(−∆)r : Hr(Ω)→ H−r(Ω), (10)

where the fractional Laplace operator (−∆)r is given by [29]

(−∆)rψ(x) = ck,r P.V.
∫
Rk

ψ(x)− ψ(z)
|x− z|k+2r dz, ck,r > 0. (11)

We use the embedding chain below:

Hr(Ω) ↪→ L2(Ω) ↪→ H−r(Ω). (12)

After that, we obtain the subsequent chain of Sobolev spaces via the Cartesian product

(Hr(Ω))k ↪→ (L2(Ω))k ↪→ (H−r(Ω))k. (13)

2.2. Extension Sobolev Spaces

Using the weighted space illustrated below, we may find the weak solution to Equation (3)

Hr(C+) = {Ψ ∈ H1
loc
(
C+
)

:
∫

C+
wα|∇Ψ(x, w)|2dxdw < +∞

}
, (14)
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with the following norm:

‖Ψ‖Hr(C+) :=
(∫

C+
wα|∇Ψ(x, w)|2dxdw

) 1
2
. (15)

Additionally, we have the following spaces:

Hr
Ω
(
C+
)
=
{

Ψ ∈ Hr(C+) : Ψ|Rk×{0} = 0 in Rk\Ω
}

, (16)

and
Hr(Ω) =

{
Ψ|Ω×{0} : Ψ ∈ Hr

Ω
(
C+
)}

. (17)

which provide a clear interpretation of the solutions to Equations (3) in a bounded domain
Ω. The following embedding is also available:

Lemma 1. Assume 1 ≤ p < 2k
k−2r , k > 2r. Then, TrΩ

(
Hr

Ω(C+)
)
is compactly embedded in

Lp(Ω), and the trace operator TrΩ : Hr
Ω(C+)→ Hr(Ω) satisfies the following inequality:

‖TrΩ Ψ‖Hr(Ω) ≤ δ‖Ψ‖Hr
Ω(C+), δ > 0. (18)

Furthermore, TrΩΨ = Ψ(x, 0) = ψ(x) is the trace of Ψ onto Ω× {0}.

2.3. Eigenvalue Problem

In this section, we will look at some new information from [29] about the eigenvalue
of the fractional elliptic equation shown below:{

(−∆)rψ = λ ψ in Ω,
ψ = 0 in Rk\Ω.

(19)

Theorem 1 ([29]). The first eigenvalue of Equation (19) is positive and can be characterized
as follows:

λ = min
Ψ∈Hr

Ω(C+)

∫
C+

wα∇Ψ · ∇Ψdxdw, ‖Ψ(x, 0)‖L2(Ω) = 1, (20)

or its equivalent, shown below:

λ = min
Ψ∈Hr

Ω(C+)

∫
C+ wα∇Ψ · ∇Ψdxdw∫

Ω |Ψ(x, 0)|2dx
, Ψ(x, 0) 6= 0. (21)

3. k × k Cooperative Fractional Systems

Here, we show that weak solutions exist and create the optimality criteria for a k× k
cooperative fractional system. This section contains two parts. Using the lemma of Lax–
Milgram, we prove the existence and uniqueness of weak solutions in Section 3.1. The
optimality requirements are derived using an adjoint problem in Section 3.2.

3.1. The Weak Solution

We first convert Equation (3) into a weak form. In fact, the first equation in Equation (3)
is multiplied by a test function {φi(x, w)}k

i=1 ∈
(
Hr

Ω(C+)
)k, and by integrating over C+,

we obtain ∫
C+
∇.(wα∇Ψi)φi(x, w)dx dt = 0. (22)

Using Green’s formula yields∫
C+

wα∇Ψi∇φi(x, w)dx dw = −
∫

Ω×{0}
TrΩ φi(x, w) lim

w→0+
wα ∂Ψi

∂w
dx. (23)
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Therefore, we have∫
C+

wα∇Ψi∇φi(x, w)dx dw =
∫

Ω×{0}
TrΩ φi(x, w)

∂Ψi
∂ν

dx, (24)

By using the systems in Equation (3), we obtain

k

∑
i=1

∫
C+

wα∇Ψi∇φi(x, w)dx dw = sr

k

∑
i,j=1

∫
Ω×{0}

( fi + aij TrΩ Ψij(x, w))TrΩ φi(x, w)dx. (25)

To this end, a bilinear form on
(
Hr

Ω(C+)
)k can be defined as

a(Ψ, φ) =
k

∑
i=1

∫
C+

wα∇Ψi∇φi(x, w)dxdw− sr

k

∑
i,j=1

∫
Ω×{0}

aij TrΩ Ψj(x, w)TrΩ φi(x, w)dx. (26)

A linear form can also be defined as follows:

F(φ) = sr

k

∑
i=1

∫
Ω×{0}

fi(x)TrΩ φi(x, w)dx, ∀ φ ∈
(
Hr

Ω
(
C+
))k. (27)

Definition 1 ([10]). We say that the square matrix B = (bij) is an M matrix if bij ≤ 0 for i 6= j
and bii > 0 and if all principal minors extracted from B are positive.

Lemma 2. The bilinear form in Equation (26) is coercive if the square matrix

λI − sr A =


λ− sra11 −sra12 . . . −sra1k
−sra21 λ− sra22 . . . −sra2k

. . . . . .

. . . . . .
−srak1 −srak2 . . . λ− srakk

 (28)

is a non-singular M matrix.

Proof. Replacing φ = {φ1}k
i=1 by Y = {Ψi}k

i=1 in Equation (26) yields

a(Ψ, Ψ) =
k

∑
i=1

∫
C+

wα∇Ψi(x, w)∇Ψi(x, w)dxdw− sr

k

∑
i,j=1

∫
Ω×{0}

aij TrΩ Ψj(x, w)TrΩ Ψi(x, w)dx

=
k

∑
i=1

∫
C+

wα∇Ψi(x, w)∇Ψi(x, w)dxdw− sr

k

∑
i=1

∫
Ω×{0}

aii TrΩ Ψi(x, t)TrΩ Ψi(x, w)dx (29)

− sr

n

∑
i 6=j=1

∫
Ω×{0}

aij TrΩ Ψj(x, w)TrΩ Ψi(x, w)dx.

By applying Cauchy–Schwartz inequality, we have

a(Ψ, Ψ) ≥
k

∑
i=1

∫
C+

wα|∇Ψi|2dx dw− sr

k

∑
i=1

aii

∫
Ω×{0}

|TrΩ Ψi|2dx

− sr

k

∑
i 6=j=1

aij

(∫
Ω×{0}

|TrΩ Ψi|2dx
) 1

2
(∫

Ω×{0}
|TrΩ Ψj|2dx

) 1
2
. (30)
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From Equation (20), we deduce

a(Ψ, Ψ) ≥
k

∑
i=1

(
1− aiisr

λ

)
‖Ψi‖2 − 1

λ
sr

k

∑
i 6=j

aij‖Ψj‖‖Ψi‖

=
k

∑
i=1

1
λ
(λ− aiisr)‖Ψi‖2 − sr

λ

k

∑
i 6=j=1

aij‖Ψj‖‖Ψi‖. (31)

Hence from Equation (28), we obtain

a(Ψ, Ψ) ≥ C‖Ψ‖2
(Hr

Ω(C+))
k . (32)

Thus, the bilinear form a(Ψ, ϕ) is coercive.

3.2. The Optimality Conditions

The fundamental goal of this subsection is to formulate the control problem. We create
the adjoint state for the control problem. Furthermore, we created the optimality conditions
using the Lions approach [6,7]. This subsection consists of two parts. The first part deduces
the nonlocal optimality conditions. The second part reveals the local optimality conditions.

3.2.1. Fractional Optimal Control

Take into consideration the space of controls as (L2(Ω))k. Then, for an element u =
{ui}k

i=1 ∈ (L2(Ω))k, the state ψ(u) = {ψi(u)}k
i=1 solves the following system:

(−∆)rψi(u) = ∑k
j=1 aij ψj(u) + ui in Ω,

ψi(u) = 0 in Rk\Ω,
∀i = 1, 2, 3, . . . , k.

(33)

The equations for the observations are as follows:

ψ∗i (u) = ψi(u), i = 1, 2, 3, . . . , k. (34)

For a given {zid}k
i=1 ∈ (L2(Ω))k and {vi}k

i=1 ∈ (L2(Ω))k, when Equation (33) is
applied, the cost functional is given by

Q(v) = 1
2

k

∑
i=1
‖ψi(v)− zid‖2

L2(Ω) + (N v, v)(L2(Ω))k , (35)

where the positive definite Hermitian operator N ∈ L((L2(Ω))k) satisfies the following condi-
tion:

(N v, v) ≥ γ‖v‖2
(L2(Ω))k , γ > 0. (36)

Assume that Uad ⊂ L2(Ω) is closed and convex. The problem of control is then
presented by {

Finding u ∈ (Uad)
k,

such that Q(u) ≤ Q(v), ∀ v ∈ (Uad)
k.

(37)

Theorem 2. There exists a unique optimal control u ∈ (Uad)
k if the cost functional is provided

by Equations (35) and (36) is true. Additionally, the following equations explain this control:{
(−∆)r pi(u)−∑k

j=1 aji pj(u) = ψi(u)− zid in Ω,

pi(u) = 0 on Rk\Ω.
(38)
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together with
k

∑
i=1

(pi, vi − ui) + (N u, v− u)(L2(Ω)k ≥ 0, ∀ v ∈ (Uad)
k, (39)

where {pi}k
i=1 ∈ (Hr(Ω))k is the adjoint state.

Proof. Due to the fact that N > 0, the cost functional in Equation (35) is strictly convex.
Additionally, Uad is non-empty, closed, bounded and convex in L2(Ω). Then, the optimal
control exists and is unique.

Hence, the optimal control {ui}k
i=1 ∈ (Uad)

k satisfies the following inequality:

Q′(u).(v− u) ≥ 0, ∀ v ∈ (Uad)
k, (40)

which is equivalent to [6]

k

∑
i=1

(ψi(u)− zid, ψi(v)− ψi(u)) + (N u, v− u) ≥ 0, ∀ v ∈ (Uad)
k. (41)

Now, since (A ψ, p) = (ψ, A∗ p), where

A(ψ = {ψi}k
i=1) = (−∆)rψi −

k

∑
i=1

aijψj, (42)

and A∗ its adjoint, then

(A ψ, p) =

(
(−∆)rψi −

k

∑
i=1

aij ψj, pi

)

= ((−∆)rψi, pi)− (
k

∑
i=1

aijψj, pi)

= (ψi, (−∆)r pi)− (ψi,
k

∑
j=1

aji pj)

= (ψ, A∗ p), (43)

Consider the following adjoint system:{
(−∆)r pi(u)−∑k

j=1 aji pj(u) = ψi(u)− zid in Ω,

pi(u) = 0 on Rk\Ω.
(44)

By using Equations (33) and (44), we deduce that

k

∑
i=1

(pi, vi − ui) + (N u, v− u)(L2(Ω))k ≥ 0, ∀ v ∈ (Uad)
k. (45)

3.2.2. Extended Optimal Control

If ψ(v) ∈ (Hr(Ω))k is a solution to Equation (33) with v = {vi}k
i=1 ∈ (H−r(Ω))k and

Ψ(v) ∈
(
Hr

Ω(C+)
)k solves the following systems:


∇.(wα∇Ψi(u)) = 0 in C+,
Ψi(x, 0) = 0 in Rk\Ω,
1
sr

∂Ψi(u)
∂ν = (ui + ∑k

j=1 aji TrΩ Ψj(u)) on Ω× {0}.
(46)
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Then, we have
TrΩ Ψ(v) = ψ(v). (47)

Consequently, the equivalent extended OCP is given by

min Q(v) =
1
2

k

∑
i=1
‖TrΩ Ψi(v)− zid‖2

L2(Ω) + (N v, v)(L2(Ω))k , ∀ v ∈ (Uad)
k, (48)

Theorem 3. If the cost functional is provided by Equation (48), and the condition in Equation (36)
is met, then there exists a unique optimal control u = {ui}k

i=1 ∈ (U ad)k. This control may also be
explained using the following equations:

∇.(wα∇Pi) = 0 in C+,
Pi(x, 0) = 0 in Rk\Ω,
( ∂Pi

∂ν , TrΩ Ψi) = (TrΩ Pi,
∂Ψi
∂ν ) on Ω× {0}.

(49)

as well as

k

∑
i=1

(TrΩ Pi, vi − ui) + (N u, v− u) ≥ 0, ∀ v ∈ (Uad)
k, (50)

where P = {Pi}k
i=1 ∈

(
Hr

Ω(C+)
)k is the adjoint state.

Proof. The optimal control u ∈ (Uad)
k is achieved only when

Q′(u).(v− u) ≥ 0, ∀ v ∈ (Uad)
k, (51)

which, again, is the same as [6]

k

∑
i=1

(TrΩ Ψi(v)− zid, TrΩ Ψi(v)− TrΩ Ψi(u)) + (N u, v− u) ≥ 0, ∀ v ∈ (Uad)
k. (52)

If (A Ψ, P) = (Ψ, A∗ P), then

(A Ψ, P) =
k

∑
i=1

(∇.(tα∇Ψi), Pi)

=
k

∑
i=1

∫
C+
∇.(wα∇Ψi)Pidx dw

=
k

∑
i=1

∫
C+
∇.(wα∇Pi)Ψi(x, w)dx dw (53)

−
k

∑
i=1

∫
Ω

TrΩ Ψi
∂Pi
∂ν

dx +
k

∑
i=1

∫
Ω

TrΩ Pi
∂Ψi
∂ν

dx

=(Ψ, A∗ P),

Hence, the condition in Equation (49) has been met.
We consider the following adjoint systems:

∇.(wα∇Pi) = 0 in C+,
Pi(x, 0) = 0 in Rk\Ω,
1
sr

∂Pi
∂ν −∑k

j=1 aji TrΩ Pj = TrΩ Ψi(v)− zid on Ω× {0}.
(54)

Then, Equation (52) is equivalent to
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k

∑
i=1

(
1
sr

∂Pi
∂ν
−

k

∑
j=1

aji TrΩ Pj, TrΩ Ψi(v)− TrΩ Ψi(u)

)
+ (N u, v− u) ≥ 0, ∀ v ∈ (Uad)

k. (55)

Consequently, by using the final condition from Equation (49), the optimality condi-
tion becomes

k

∑
i=1

(TrΩ Pi, vi − ui) + (N u, v− u) ≥ 0, ∀ v ∈ (Uad)
k. (56)

4. Summary and Conclusions

In this work, we examined the OCP for k× k fractional cooperative systems. Due to
the difficulty created by the nonlocality of the fractional Laplace operator, we generalized
our issue to local cooperative systems utilizing the harmonic extension technique. The
Lax–Milgram lemma was used to illustrate the existence and uniqueness of the weak
solution to the local system. Additionally, the conditions of optimality for both the local
and nonlocal systems were proven using the Lions technique. The findings are equivalent
to the standard results if r → 1.

5. Open Problems

• Study the control problems for k × k cooperative fractional parabolic systems in
the form 

∂ψi
∂t + (−∆)rψi = ∑k

j=1 aij ψj + fi in Ω× (0, T),

ψi = 0 in Rk\Ω× (0, T),
ψi(0) = o in Ω,
∀i = 1, 2, 3, . . . , k,

(57)

• Study the control problems for k× k cooperative time and space fractional systems in
the form 

Ds
t + (−∆)rψi = ∑k

j=1 aij ψj + fi in Ω× (0, T),

ψi = 0 in Rk\Ω× (0, T),
ψi(0) = o in Ω,
∀i = 1, 2, 3, . . . , k,

(58)

where Ds
t is the Riemann–Liouville sense.
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