Briot–Bouquet Differential Subordinations for Analytic Functions Involving the Struve Function
Abstract
:1. Introduction
2. Subordination Properties for the Operator
3. Subordination Properties for the Class
4. An Application of Fractional Calculus
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirata, M.H. Flow near the bow of a steadily turning ship. J. Fluid Mech. 1975, 71, 283–291. [Google Scholar] [CrossRef]
- Shaw, D.C. Perturbational results for diffraction of water-waves by nearly-vertical barriers. IMA J. Appl. Math. 1985, 34, 99–117. [Google Scholar] [CrossRef]
- Shao, J.; Hänggi, P. Decoherent dynamics of a two-level system coupled to a sea of spins. Phys. Rev. Lett. 1998, 81, 5710–5713. [Google Scholar] [CrossRef]
- Singh, G.; Agarwal, P.; Choi, J. A sequence involving an extended Struve function via a differential operator. Bol. Soc. Paran. Math. 2021, 39, 129–137. [Google Scholar] [CrossRef]
- Nisar, K.S.; Baleanu, D.; Al Qurashi, M.M. Fractional calculus and application of generalized Struve function. SpringerPlus 2016, 5, 910. [Google Scholar] [CrossRef] [PubMed]
- Suthar, D.L.; Baleanu, D.; Purohit, S.D.; Uçar, F. Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Math. 2020, 5, 1706–1719. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Choi, J.; Nisar, K.S. Certain families of integral formulas involving Struve functions. Bol. Soc. Paran. Math. 2019, 37, 27–35. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag–Leffler confluent hypergeometric function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Parmar, R.K.; Choi, J. Fractional calculus of the (p, q)-extended Struve function. Far East J. Math. 2018, 103, 541–559. [Google Scholar] [CrossRef]
- Brown, R.K. Univalence of Bessel functions. Proc. Am. Math. Soc. 1960, 11, 278–283. [Google Scholar] [CrossRef]
- Kreyszig, E.; Todd, J. The radius of univalence of Bessel functions. Illinois J. Math. 1960, 4, 143–149. [Google Scholar] [CrossRef]
- Baricz, Á.; Kupán, P.A.; Szász, R. The radius starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 2014, 142, 2019–2025. [Google Scholar] [CrossRef]
- Baricz, Á.; Yagmur, N. Geometric properties of some Lommel and Struve functions. Ramanujan J. 2017, 42, 325–346. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-Type functions. Fractal Fract. 2022, 6, 54. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press Inc.: Cambridge, MA, USA, 1994; Volume 1, pp. 157–169. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Mendiretta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions asscociated with exponential function. Bull. Malays. Math. Sci. Soc. 2014, 38, 365–386. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, J. Computation of Special Functions; A Wiley-Interscience Publication; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Orhan, H.; Yagmur, N. Geometric properties of generalized Struve functions. Ann Alexandru Ioan Cuza Univ-Math. 2014. [Google Scholar] [CrossRef]
- Yagmur, N.; Orhan, H. Starlikeness and convexity of generalized Struve functions. Abstr. Appl. Anal. 2013, 2013, 954513. [Google Scholar] [CrossRef]
- Noreen, S.; Raza, M.; Deniz, E.; Kazımoglu, S. On the Janowski class of generalized Struve functions. Afr. Mat. 2019, 30, 23–35. [Google Scholar] [CrossRef]
- Naz, A.; Nagpal, S.; Ravichandran, V. Exponential starlikeness and convexity of confluent hypergeometric, Lommel and Struve functions. Mediterr. J. Math. 2020, 17, 1–22. [Google Scholar] [CrossRef]
- Raza, M.; Yagmur, N. Some properties of a class of analytic functions defined by generalized Struve functions. Turkish J. Math. 2015, 39, 931–944. [Google Scholar] [CrossRef]
- Eenigenburg, P.; Miller, S.S.; Mocanu, P.; Reade, M. On a Briot-Bouquet differential subordination. In General Inequalities 3, International Series of Numerical Mathematics; Birkhauser Verlag: Basel, Switzerland, 1983; Volume 64, pp. 339–348. [Google Scholar]
- Miller, S.S.; Mocanu, P. Univalent solutions of Briot-Bouquet differential equations. J. Differ. Equ. 1985, 56, 297–309. [Google Scholar] [CrossRef]
- Trailokya, P.; Breaz, D. Admissible classes of analytic functions associated with generalized Struve functions. Stud. Univ. Babeş-Bolyai Math. 2017, 62, 205–215. [Google Scholar]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saigo, M.; Owa, S. A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 1988, 131, 412–420. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çetinkaya, A.; Cotîrlă, L.-I. Briot–Bouquet Differential Subordinations for Analytic Functions Involving the Struve Function. Fractal Fract. 2022, 6, 540. https://doi.org/10.3390/fractalfract6100540
Çetinkaya A, Cotîrlă L-I. Briot–Bouquet Differential Subordinations for Analytic Functions Involving the Struve Function. Fractal and Fractional. 2022; 6(10):540. https://doi.org/10.3390/fractalfract6100540
Chicago/Turabian StyleÇetinkaya, Asena, and Luminita-Ioana Cotîrlă. 2022. "Briot–Bouquet Differential Subordinations for Analytic Functions Involving the Struve Function" Fractal and Fractional 6, no. 10: 540. https://doi.org/10.3390/fractalfract6100540
APA StyleÇetinkaya, A., & Cotîrlă, L. -I. (2022). Briot–Bouquet Differential Subordinations for Analytic Functions Involving the Struve Function. Fractal and Fractional, 6(10), 540. https://doi.org/10.3390/fractalfract6100540