Next Article in Journal
Specific Classes of Analytic Functions Communicated with a Q-Differential Operator Including a Generalized Hypergeometic Function
Next Article in Special Issue
Initial Boundary Value Problem for a Fractional Viscoelastic Equation of the Kirchhoff Type
Previous Article in Journal
Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
Previous Article in Special Issue
An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions

College of Science, Tianjin University of Technology, Tianjin 300384, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(10), 543; https://doi.org/10.3390/fractalfract6100543
Submission received: 13 August 2022 / Revised: 16 September 2022 / Accepted: 20 September 2022 / Published: 26 September 2022

Abstract

:
A general system of fractional differential equations with coupled fractional Stieltjes integrals and a Riemann–Liouville fractional integral in boundary conditions is studied in the context of pattern formation. We need to transform the fractional differential system into the corresponding integral operator to obtain the existence and uniqueness of solutions for the system. The contraction mapping principle in Banach space and the alternative theorem of Leray–Schauder are applied. Finally, we give two applications to illustrate our theoretical results.

1. Introduction

A general system of fractional differential equations
D 0 + α 1 ( D 0 + β 1 x ( t ) ) + f ( t , x ( t ) , y ( t ) ) = 0 , t [ 0 , 1 ] , D 0 + α 2 ( D 0 + β 2 y ( t ) ) + g ( t , x ( t ) , y ( t ) ) = 0 , t [ 0 , 1 ] ,
supplemented with coupled nonlocal integral boundary conditions are considered.
D 0 + β 1 x ( 0 ) = 0 , x ( 0 ) = 0 , x ( 1 ) = γ 1 I 0 + δ 1 y ( ξ ) + i = 1 p 0 1 y ( τ ) d H i ( τ ) , D 0 + β 2 y ( 0 ) = 0 , y ( 0 ) = 0 , y ( 1 ) = γ 2 I 0 + δ 2 x ( η ) + j = 1 q 0 1 x ( τ ) d K j ( τ ) ,
where α 1 is in the interval ( 0 , 1 ) , β 1 is in the interval ( 1 , 2 ) , α 2 is in the interval ( 0 , 1 ] , β 2 is in the interval ( 1 , 2 ] , p , q N , and γ 1 , γ 2 , δ 1 , δ 2 > 0 , 0 < ξ , η < 1 K j ( t ) , j = 1 , , q , H i ( t ) , i = 1 , , p are bounded variation functions. Both function f and function g are nonlinear.
Coupled boundary conditions appear in the study of reaction-diffusion equations [1], heat equations [2] and mathematical biology [3]. Boundary value problems with coupled boundary conditions constitute a very interesting and important class of problems. Recently, much attention has been focused on the study of the existence of solutions for boundary value problems with coupled boundary conditions, see [4,5,6,7,8,9,10,11,12,13].
In [14], Tudorache and Luca investigated the systems of Riemann–Liouville fractional differential equations with coupled integral boundary conditions.
D 0 + α x ( t ) + f ( t , x ( t ) , y ( t ) , I 0 + θ 1 x ( t ) , I 0 + σ 1 y ( t ) ) = 0 , t ( 0 , 1 ) , D 0 + β y ( t ) + g ( t , x ( t ) , y ( t ) , I 0 + θ 2 x ( t ) , I 0 + σ 2 y ( t ) ) = 0 , t ( 0 , 1 ) ,
x ( 0 ) = x ( 0 ) = = x ( n 2 ) ( 0 ) = 0 , D 0 + γ 0 x ( 1 ) = i = 1 p 0 1 D 0 + γ i y ( t ) d H i ( t ) , y ( 0 ) = y ( 0 ) = = y ( m 2 ) ( 0 ) = 0 , D 0 + δ 0 y ( 1 ) = i = 1 q 0 1 D 0 + δ i x ( t ) d K i ( t ) ,
where σ 1 , θ 1 , θ 2 , σ 2 > 0 , f and g are functions that are nonlinear. The contraction mapping principle in Banach space, the alternative theorem of Leray–Schauder and Krasnosel’skii-type theorem are adopted.
In [15], Bashir Ahmad and Rodica Luca considered the system of fractional integro-differential equations
( c D α + λ c D α 1 ) u ( t ) = f ( t , u ( t ) , v ( t ) , c D p 1 v ( t ) , I q 1 v ( t ) ) , t ( 0 , 1 ) , ( c D β + μ c D β 1 ) v ( t ) = g ( t , u ( t ) , v ( t ) , c D p 2 u ( t ) , I q 2 u ( t ) ) , t ( 0 , 1 ) ,
with the coupled boundary conditions
u ( 0 ) = u ( 0 ) = u ( 0 ) = 0 , u ( 1 ) = 0 1 u ( s ) d H 1 ( s ) + 0 1 v ( s ) d H 2 ( s ) , v ( 0 ) = v ( 0 ) = v ( 0 ) = 0 , v ( 1 ) = 0 1 u ( s ) d K 1 ( s ) + 0 1 v ( s ) d K 2 ( s ) .
On the other hand, boundary value problems with Riemann–Liouville fractional integral boundary conditions have attracted much attention.
In [16], Laadjal, M. Al-Mdallal and Jarad discussed the coupled system of fractional Langevin equations
c D α 1 ( c D β 1 + λ ) ψ 1 ( t ) = f ( t , ψ 1 ( t ) , ψ 2 ( t ) ) , t J , 0 < α 1 1 < β 1 2 , c D α 2 ( c D β 2 + k ) ψ 2 ( t ) = g ( t , ψ 1 ( t ) , ψ 2 ( t ) ) , t J , 0 < α 2 1 < β 2 2 ,
with nonlocal nonseparated boundary conditions
ψ 1 ( 0 ) = a 0 , ψ 2 ( 0 ) = b 0 , ψ 1 ( 0 ) = ψ 2 ( 0 ) = 0 , ψ 1 ( ξ ) = a ( c D p ψ 2 ) ( μ 1 ) , ξ ( 0 , 1 ] , μ 1 J , 0 < p < β 2 , ψ 2 ( η ) = b ( I q ψ 1 ) ( μ 2 ) , η ( 0 , 1 ] , μ 2 J , q 0 .
In [17], Zhang, Li and Lu considered the fractional differential system with Riemann–Liouville fractional integral boundary conditions
D 0 + α 1 u ( t ) = f 1 ( t , u ( t ) , v ( t ) , D 0 + ρ 1 u ( t ) , D 0 + ρ 2 v ( t ) ) , t ( 0 , 1 ) , D 0 + α 2 v ( t ) = f 2 ( t , u ( t ) , v ( t ) , D 0 + ρ 1 u ( t ) , D 0 + ρ 2 v ( t ) ) , t ( 0 , 1 ) ,
u ( 0 ) = u ( 0 ) = 0 , v ( 0 ) = v ( 0 ) = 0 , u ( 1 ) = γ 1 I 0 + β 1 u ( η 1 ) , v ( 1 ) = γ 2 I 0 + β 2 v ( η 2 ) .
However, boundary value problems with fractional Stieltjes integrals and Riemann–Liouville fractional integrals in boundary conditions have not been discussed until now. Now, in this paper, we shall investigate the existence and uniqueness of the solutions for the system (1), (2). As far as the authors know, the contraction mapping principle in Banach space and the alternative theorem of Leray–Schauder type have not been developed for boundary value problems with fractional Stieltjes integrals and Riemann–Liouville fractional integrals in boundary conditions, so it is interesting and important to discuss the (1), (2).
The organization of this paper is as follows. In Section 2, we present some useful basics definitions and lemmas. Section 3 gives the uniqueness and existence of solutions for the system. At the end of the paper, two examples that illustrate our results are given.

2. Preliminary

For convenience, we first present some useful basics lemmas of fractional calculus [18] in this part.
Definition 1
([18]). For a function k : ( 0 , + ) R ,
I 0 + β k ( τ ) = 1 Γ ( β ) 0 τ ( τ s ) β 1 k ( s ) d s ,
is defined as the β ( β > 0 ) order Riemann–Liouville fractional integral of the function k.
Definition 2
([18]). For a function k : ( 0 , + ) R ,
D 0 + β k ( τ ) = 1 Γ ( n β ) ( d d τ ) n 0 τ ( τ s ) n β 1 k ( s ) d s ,
is defined as the β ( β > 0 ) order Riemann–Liouville fractional derivative of the function k, in this place n = [ β ] + 1 .
Lemma 1
([18]). Assume that v C ( 0 , 1 ) L ( 0 , 1 ) with a fractional derivative of order β > 0 that belongs to C ( 0 , 1 ) L ( 0 , 1 ) . Then,
I 0 + β D 0 + β v ( τ ) = v ( τ ) + c 1 τ β 1 + c 2 τ β 2 + + c N τ β N ,
for some c i R , i = 1 , 2 , , N , where N is the smallest integer greater than or equal to β .
Lemma 2
([19]). Let T : X X be continuous and compact. Denote M ( T ) = { u X : u = m T ( u ) f o r s o m e 0 < m < 1 } . Then, one of the following conclusions is true:
(i) 
M ( T ) is an unbounded set;
(ii) 
there exists x X satisfying T x = x .
We denote by
Δ 1 = Γ ( β 2 ) Γ ( β 2 + δ 1 ) γ 1 ξ β 2 + δ 1 1 + i = 1 p 0 1 τ β 2 1 d H i ( τ ) ,
Δ 2 = Γ ( β 1 ) Γ ( β 1 + δ 2 ) γ 2 η β 1 + δ 2 1 + j = 1 q 0 1 τ β 1 1 d K j ( τ ) .
Lemma 3.
Suppose x , y C [ 0 , 1 ] , Δ = 1 Δ 1 Δ 2 0 , β 1 , β 2 ( 1 , 2 ] , α 1 , α 2 ( 0 , 1 ] , p , q N , ( α ¯ 1 : = α 1 + β 1 + δ 2 , α ¯ 2 : = α 2 + β 2 + δ 1 ) , γ 1 , γ 2 , δ 1 , δ 2 > 0 , 0 < ξ , η < 1 , K j ( t ) , j = 1 , , q , H i ( t ) , i = 1 , , p , are bounded variation functions, h , k are continuous on the interval ( 0 , 1 ) , furthermore, h , k are integrable on the interval ( 0 , 1 ) . Then, the functional expressions
x ( t ) = 1 Γ ( α 1 + β 1 ) 0 t ( t s ) α 1 + β 1 1 h ( s ) d s + t β 1 1 Δ [ 1 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 h ( s ) d s γ 1 Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 k ( s ) d s 1 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 k ( s ) d s d H i ( τ ) + Δ 1 ( 1 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 k ( s ) d s γ 2 Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 h ( s ) d s 1 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 h ( s ) d s d K j ( τ ) ) ] ,
y ( t ) = 1 Γ ( α 2 + β 2 ) 0 t ( t s ) α 2 + β 2 1 k ( s ) d s + t β 2 1 Δ [ 1 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 k ( s ) d s γ 2 Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 h ( s ) d s 1 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 h ( s ) d s d K j ( τ ) + Δ 2 ( 1 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 h ( s ) d s γ 1 Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 k ( s ) d s 1 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 k ( s ) d s d H i ( τ ) ) ] .
is the solution of the system
D 0 + α 1 ( D 0 + β 1 x ( t ) ) + h ( t ) = 0 , t ( 0 , 1 ) , D 0 + α 2 ( D 0 + β 2 y ( t ) ) + k ( t ) = 0 , t ( 0 , 1 ) .
Furthermore, ( x ( t ) , y ( t ) ) satisfies the equation condition (2).
Proof. 
By Lemma 1, the solutions for the systems (2), (5) are give by
x ( t ) = I 0 + α 1 + β 1 h ( t ) + c 1 t β 1 1 ,
y ( t ) = I 0 + α 2 + β 2 k ( t ) + d 1 t β 2 1 ,
where c 1 , d 1 R . From the boundary conditions x ( 1 ) = γ 1 I 0 + δ 1 y ( ξ ) + i = 1 p 0 1 y ( τ ) d H i ( τ ) and y ( 1 ) = γ 2 I 0 + δ 2 x ( η ) + j = 1 q 0 1 x ( τ ) d K j ( τ ) , we get
I 0 + α 1 + β 1 h ( 1 ) + c 1 = γ 1 I 0 + α ¯ 2 k ( ξ ) + γ 1 d 1 Γ ( β 2 ) Γ ( β 2 + δ 1 ) ξ β 2 + δ 1 1 + i = 1 p 0 1 d 1 τ β 2 1 I 0 + α 2 + β 2 k ( τ ) d H i ( τ ) ,
I 0 + α 2 + β 2 k ( 1 ) + d 1 = γ 2 I 0 + α ¯ 1 h ( η ) + γ 2 c 1 Γ ( β 1 ) Γ ( β 1 + δ 2 ) η β 1 + δ 2 1 + j = 1 q 0 1 c 1 τ β 1 1 I 0 + α 1 + β 1 h ( τ ) d K j ( τ ) .
Solving the above system, we find that
c 1 = 1 Δ I 0 + α 1 + β 1 h ( 1 ) γ 1 I 0 + α ¯ 2 k ( ξ ) i = 1 p 0 1 I α 2 + β 2 k ( τ ) d H i ( τ ) + Δ 1 Δ I 0 + α 2 + β 2 k ( 1 ) γ 2 I 0 + α ¯ 1 h ( η ) j = 1 q 0 1 I 0 + α 1 + β 1 h ( τ ) d K j ( τ ) ,
d 1 = 1 Δ I 0 + α 2 + β 2 k ( 1 ) γ 2 I 0 + α ¯ 1 h ( η ) j = 1 q 0 1 I 0 + α 1 + β 1 h ( τ ) d K j ( τ ) + Δ 2 Δ I 0 + α 1 + β 1 h ( 1 ) γ 1 I 0 + α ¯ 2 k ( ξ ) i = 1 p 0 1 I α 2 + β 2 k ( τ ) d H i ( τ ) .
Substituting the values of c 1 , d 1 in (6) and (7), we get the integral functional expressions (3) and (4). The conclusion can be obtained. □
The Banach space E = C [ 0 , 1 ] is defined with the norm ω = max 0 τ 1 | ω ( τ ) | .
Let Y = E × E . So, the space Y = { ( x , y ) : ( x , y ) Y } with the norm ( x , y ) Y = x + y is Banach space. The operator expression T : Y Y is defined by T ( x , y ) ( t ) = ( T 1 ( x , y ) ( t ) , T 2 ( x , y ) ( t ) ) , where
T 1 ( x , y ) ( t ) = t β 1 1 Δ [ 1 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 g ( s , x ( s ) , y ( s ) ) d s d H i ( τ ) γ 1 Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 g ( s , x ( s ) , y ( s ) ) d s + 1 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s + Δ 1 ( 1 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s d K j ( τ ) γ 2 Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 f ( s , x ( s ) , y ( s ) ) d s + 1 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 g ( s , x ( s ) , y ( s ) ) d s ) ] 1 Γ ( α 1 + β 1 ) 0 t ( t s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s ,
T 2 ( x , y ) ( t ) = t β 2 1 Δ [ 1 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s d K j ( τ ) γ 2 Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 f ( s , x ( s ) , y ( s ) ) d s + 1 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 g ( s , x ( s ) , y ( s ) ) d s + Δ 2 ( 1 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 g ( s , x ( s ) , y ( s ) ) d s d H i ( τ ) γ 1 Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 g ( s , x ( s ) , y ( s ) ) d s + 1 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s ) ] 1 Γ ( α 2 + β 2 ) 0 t ( t s ) α 2 + β 2 1 g ( s , x ( s ) , y ( s ) ) d s .
Note that the couple fixed point of the integral operator T happens to satisfy the system (1) and the boundary condition (2).

3. Main Result

Now we present the main conclusions of the system (1), (2). The tools we used include the contraction mapping principle in Banach space and the alternative theorem of Leray–Schauder type.
We give the following notation:
M 1 = | Δ 1 | | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + | Δ 1 | γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + 1 | Δ | Γ ( α 1 + β 1 + 1 ) + 1 Γ ( α 1 + β 1 + 1 ) , M 2 = 1 | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + | Δ 1 | | Δ | Γ ( α 2 + β 2 + 1 ) , M 3 = | Δ 2 | | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + | Δ 2 | γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + 1 | Δ | Γ ( α 2 + β 2 + 1 ) + 1 Γ ( α 2 + β 2 + 1 ) , M 4 = 1 | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + | Δ 2 | | Δ | Γ ( α 1 + β 1 + 1 ) , M 5 = M 1 1 Γ ( α 1 + β 1 + 1 ) , M 6 = M 3 1 Γ ( α 2 + β 2 + 1 ) .
Additionally, the following assumptions hold:
Hypothesis 1 (H1).
By continuity of function f, there exist real constants a i ( i = 0 , 1 , 2 ) that satisfy
| f ( t , u , v ) | a 0 + a 1 | u | + a 2 | v | .
By continuity of function g, there exist real constants b i ( i = 0 , 1 , 2 ) that satisfy
| g ( t , u , v ) | b 0 + b 1 | u | + b 2 | v |
for all ( t , u , v ) [ 0 , 1 ] × R × R .
Hypothesis 2 (H2).
There exist positive constants K that satisfy
K ( | u u ¯ | + | v v ¯ | ) | f ( t , u , v ) f ( t , u ¯ , v ¯ ) | ,
there exist positive constants L that satisfy
L ( | u u ¯ | + | v v ¯ | ) | g ( t , u , v ) g ( t , u ¯ , v ¯ ) | ,
for all ( t , u , u ) , ( t , u ¯ , v ¯ ) [ 0 , 1 ] × R × R .
Hypothesis 3 (H3).
There exist positive constants F 0 such that F 0 = sup t J | f ( t , 0 , 0 ) | , and there exist positive constants G 0 such that G 0 = sup t J | g ( t , 0 , 0 ) | .
Theorem 1.
Suppose that conditions ( H 2 ) and ( H 3 ) are satisfied. Moreover,
K ( M 1 + M 4 ) + L ( M 2 + M 3 ) < 1 ,
then there is a unique solution for system (1), (2).
Proof. 
We consider a real constant R > 0 such that
( M 1 + M 4 ) F 0 + ( M 2 + M 3 ) G 0 1 [ K ( M 1 + M 4 ) + L ( M 2 + M 3 ) ] R .
Let B R = { ( x , y ) Y , ( x , y ) Y R } . We prove that T mapping B R to B R . From ( H 2 ) and ( H 3 ) , we deduce that the following holds:
| f ( t , x ( t ) , y ( t ) | | f ( t , 0 , 0 ) | + | f ( t , x ( t ) , y ( t ) f ( t , 0 , 0 ) | F 0 + K ( | x | + | y | ) F 0 + K ( x + y ) = F 0 + K ( x , y ) .
Similarly, we have | g ( t , x ( t ) , y ( t ) | G 0 + L ( x , y ) .
For all ( x , y ) in B R , we obtain
| T 1 ( x , y ) ( t ) | t β 1 1 | Δ | [ L R + G 0 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 d s d H i ( τ ) + γ 1 ( L R + G 0 ) Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 d s + K R + F 0 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 d s + | Δ 1 | ( K R + F 0 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 d s d K j ( τ ) + γ 2 ( K R + F 0 ) Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 d s + L R + G 0 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 d s ) ] + K R + F 0 Γ ( α 1 + β 1 ) 0 t ( t s ) α 1 + β 1 1 d s 1 | Δ | [ L R + G 0 Γ ( α 2 + β 2 + 1 ) × i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 ( L R + G 0 ) ξ α ¯ 2 Γ ( α ¯ 2 + 1 ) + K R + F 0 Γ ( α 1 + β 1 + 1 ) + | Δ 1 | ( K R + F 0 Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 ( K R + F 0 ) η α ¯ 1 Γ ( α ¯ 1 + 1 ) + L R + G 0 Γ ( α 2 + β 2 + 1 ) ) ] + K R + F 0 Γ ( α 1 + β 1 + 1 )
= ( K R + F 0 ) ( | Δ 1 | | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + | Δ 1 | γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + 1 | Δ | Γ ( α 1 + β 1 + 1 ) + 1 Γ ( α 1 + β 1 + 1 ) ) + ( L R + G 0 ) ( 1 | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + | Δ 1 | | Δ | Γ ( α 2 + β 2 + 1 ) ) = ( K R + F 0 ) M 1 + ( L R + G 0 ) M 2 .
Let us continue with the calculations:
| T 2 ( x , y ) ( t ) | t β 2 1 | Δ | K R + F 0 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 d s d K j ( τ ) + γ 2 ( K R + F 0 ) Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 d s + L R + G 0 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 d s + | Δ 2 | L R + G 0 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 d s d H i ( τ ) + γ 1 ( L R + G 0 ) Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 d s + K R + F 0 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 d s ) ] + L R + G 0 Γ ( α 2 + β 2 ) 0 t ( t s ) α 2 + β 2 1 d s 1 | Δ | K R + F 0 Γ ( α 1 + β 1 + 1 ) × j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 ( K R + F 0 ) η α ¯ 1 Γ ( α ¯ 1 + 1 ) + L R + G 0 Γ ( α 2 + β 2 + 1 ) + | Δ 2 | L R + G 0 Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 ( L R + G 0 ) ξ α ¯ 2 Γ ( α ¯ 2 + 1 ) + K R + F 0 Γ ( α 2 + β 2 + 1 ) ) ] + L R + G 0 Γ ( α 2 + β 2 + 1 ) = ( L R + G 0 ) | Δ 2 | | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + | Δ 2 | γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + 1 | Δ | Γ ( α 2 + β 2 + 1 ) + 1 Γ ( α 2 + β 2 + 1 ) ) + ( K R + F 0 ) ( 1 | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + | Δ 2 | | Δ | Γ ( α 2 + β 2 + 1 ) ) = ( L R + G 0 ) M 3 + ( K R + F 0 ) M 4 .
Consequently,
T ( x , y ) ( K R + F 0 ) M 1 + ( L R + G 0 ) M 2 + ( L R + G 0 ) M 3 + ( K R + F 0 ) M 4 R .
Hence, T ( B R ) R .
Now we will prove that T is a contraction operator. Choose ( x , y ) , ( x ¯ , y ¯ ) in Y. For all t [ 0 , 1 ] , we find
| T 1 ( x , y ) ( t ) T 1 ( x ¯ , y ¯ ) ( t ) | t β 1 1 | Δ | [ L ( x x ¯ + y y ¯ ) Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 L ( x x ¯ + y y ¯ ) Γ ( α ¯ 2 + 1 ) ξ α ¯ 2 + K ( x x ¯ + y y ¯ ) Γ ( α 1 + β 1 + 1 ) + | Δ 1 | ( K ( x x ¯ + y y ¯ ) Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 K ( x x ¯ + y y ¯ ) Γ ( α ¯ 1 + 1 ) η α ¯ 1 + L ( x x ¯ + y y ¯ ) Γ ( α 2 + β 2 + 1 ) ) ] + K ( x x ¯ + y y ¯ ) Γ ( α 1 + β 1 + 1 ) t α 1 + β 1 K ( 1 | Δ | Γ ( α 1 + β 1 + 1 ) + | Δ 1 | | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + | Δ 1 | γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + 1 Γ ( α 1 + β 1 + 1 ) ) ( x , y ) ( x ¯ , y ¯ ) + L ( 1 | Δ | Γ ( α 2 + β 2 + 1 ) × i = 1 p | 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + | Δ 1 | | Δ | Γ ( α 2 + β 2 + 1 ) | ) ( x , y ) ( x ¯ , y ¯ ) = ( M 1 K + M 2 L ) ( x , y ) ( x ¯ , y ¯ ) .
Let us continue with the calculations:
| T 2 ( x , y ) ( t ) T 2 ( x ¯ , y ¯ ) ( t ) | t β 2 1 | Δ | [ K ( x x ¯ + y y ¯ ) Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 K ( x x ¯ + y y ¯ ) Γ ( α ¯ 1 + 1 ) η α ¯ 1 + L ( x x ¯ + y y ¯ ) Γ ( α 2 + β 2 + 1 ) + | Δ 2 | ( L ( x x ¯ + y y ¯ ) Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 L ( x x ¯ + y y ¯ ) Γ ( α ¯ 2 + 1 ) ξ α ¯ 2 + K ( x x ¯ + y y ¯ ) Γ ( α 1 + β 1 + 1 ) ) ] + L ( x x ¯ + y y ¯ ) Γ ( α 2 + β 2 + 1 ) t α 2 + β 2 L ( 1 | Δ | Γ ( α 2 + β 2 + 1 ) + | Δ 2 | | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + | Δ 2 | γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + 1 Γ ( α 2 + β 2 + 1 ) ) ( x , y ) ( x ¯ , y ¯ ) + K ( 1 | Δ | Γ ( α 1 + β 1 + 1 ) × j = 1 q | 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + | Δ 2 | | Δ | Γ ( α 2 + β 2 + 1 ) | ) ( x , y ) ( x ¯ , y ¯ ) = ( M 1 L + M 2 K ) ( x , y ) ( x ¯ , y ¯ ) .
Consequently,
T ( x , y ) ( t ) T ( x ¯ , y ¯ ) ( t ) [ ( M 1 + M 4 ) K + ( M 2 + M 3 ) L ] ( x , y ) ( x ¯ , y ¯ ) .
Using contraction mapping principle in Banach space, there is a unique function that satisfies T u = u , which happens to be the solution of the system (1), (2). □
Theorem 2.
Suppose that condition ( H 1 ) is satisfied. If ρ : = max { M 7 , M 8 } < 1 , where M 7 = a 1 ( M 1 + M 4 ) + b 1 ( M 2 + M 3 ) and M 8 = a 2 ( M 1 + M 4 ) + b 2 ( M 2 + M 3 ) , then at least one couple functions ( x ( t ) , y ( t ) ) satisfy the system (1), (2).
Proof. 
By continuity of functions f and g, the operators T 1 and T 2 are continuous, this means the operator T is also continuous. We choose an arbitrarily bounded open subset Ω from E. There exist K ¯ > 0 and L ¯ > 0 that satisfy | f ( t , x ( t ) , y ( t ) | K ¯ and | g ( t , x ( t ) , y ( t ) | L ¯ for all t in the [0,1] and ( x , y ) in Ω . Thus, by the proof of Theorem 1, we have
| T 1 ( x , y ) ( t ) | K ¯ M 1 + L ¯ M 2 , | T 2 ( x , y ) ( t ) | L ¯ M 3 + K ¯ M 4
for all t in the [0,1] and ( x , y ) in Ω . Then, we obtain
T ( x , y ) K ¯ ( M 1 + M 4 ) + L ¯ ( M 2 + M 3 ) , ( x , y ) Ω .
So, we get the boundedness of T ( Ω ) .
Take ( x , y ) Ω and 0 t 1 < t 2 1 , one has
| T 1 ( x , y ) ( t 2 ) T 1 ( x , y ) ( t 1 ) | t 2 β 1 1 t 1 β 1 1 | Δ | [ 1 Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 | g ( s , x ( s ) , y ( s ) ) | d s d H i ( τ ) + γ 1 Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 | g ( s , x ( s ) , y ( s ) ) | d s + 1 Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 | f ( s , x ( s ) , y ( s ) ) | d s + | Δ 1 | ( 1 Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 | f ( s , x ( s ) , y ( s ) ) | d s d K j ( τ ) + γ 2 Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 | f ( s , x ( s ) , y ( s ) ) | d s + 1 Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 | g ( s , x ( s ) , y ( s ) ) | d s ) ] + | 1 Γ ( α 1 + β 1 ) 0 t 2 ( t 2 s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s + 1 Γ ( α 1 + β 1 ) 0 t 1 ( t 1 s ) α 1 + β 1 1 f ( s , x ( s ) , y ( s ) ) d s | t 2 β 1 1 t 1 β 1 1 | Δ | [ L ¯ Γ ( α 2 + β 2 ) i = 1 p 0 1 0 τ ( τ s ) α 2 + β 2 1 d s d H i ( τ ) + γ 1 L ¯ Γ ( α ¯ 2 ) 0 ξ ( ξ s ) α ¯ 2 1 d s + K ¯ Γ ( α 1 + β 1 ) 0 1 ( 1 s ) α 1 + β 1 1 d s + | Δ 1 | ( K ¯ Γ ( α 1 + β 1 ) j = 1 q 0 1 0 τ ( τ s ) α 1 + β 1 1 d s d K j ( τ ) + γ 2 K ¯ Γ ( α ¯ 1 ) 0 η ( η s ) α ¯ 1 1 d s + L ¯ Γ ( α 2 + β 2 ) 0 1 ( 1 s ) α 2 + β 2 1 d s ) ] + K ¯ Γ ( α 1 + β 1 ) 0 t 1 [ ( t 2 s ) α 1 + β 1 1 ( t 1 s ) α 1 + β 1 1 ] d s + K ¯ Γ ( α 1 + β 1 ) t 1 t 2 ( t 2 s ) α 1 + β 1 1 d s K ¯ Γ ( α 1 + β 1 + 1 ) ( t 2 α 1 + β 1 t 1 α 1 + β 1 ) + K ¯ ( t 2 β 1 1 t 1 β 1 1 ) ( 1 | Δ | Γ ( α 1 + β 1 + 1 ) + | Δ 1 | γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + | Δ 1 | | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) ) + L ¯ ( t 2 β 1 1 t 1 β 1 1 ) × γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + | Δ 1 | | Δ | Γ ( α 2 + β 2 + 1 ) + 1 | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) = K ¯ Γ ( α 1 + β 1 + 1 ) ( t 2 α 1 + β 1 t 1 α 1 + β 1 ) + ( K ¯ M 5 + L ¯ M 2 ) ( t 2 β 1 1 t 1 β 1 1 ) .
We find result
T 1 ( x , y ) ( t 2 ) T 1 ( x , y ) ( t 1 ) when t 2 t 1 , for arbitrary ( x , y ) Ω .
Similarly, for ( x , y ) Ω , 0 t 1 < t 2 1 ,
| T 2 ( x , y ) ( t 2 ) T 2 ( x , y ) ( t 1 ) | L ¯ Γ ( α 2 + β 2 + 1 ) ( t 2 α 2 + β 2 t 1 α 2 + β 2 ) + L ¯ ( t 2 β 2 1 t 1 β 2 1 ) ( 1 | Δ | Γ ( α 2 + β 2 + 1 ) + | Δ 2 | γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + | Δ 2 | | Δ | Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) ) + K ¯ ( t 2 β 2 1 t 1 β 2 1 ) × γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + | Δ 2 | | Δ | Γ ( α 1 + β 1 + 1 ) + 1 | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) = L ¯ Γ ( α 2 + β 2 + 1 ) ( t 2 α 2 + β 2 t 1 α 2 + β 2 ) + ( L ¯ M 6 + K ¯ M 4 ) ( t 2 β 2 1 t 1 β 2 1 ) .
So we obtain
T 2 ( x , y ) ( t 2 ) T 2 ( x , y ) ( t 1 ) when t 2 t 1 , for arbitrary ( x , y ) Ω .
The conclusion that T : B R B R is continuous and compact can be deduced from the Arzela–Ascoli theorem.
Finally, we will give the fact M ( T ) = { ( x , y ) E × E : ( x , y ) = m T ( x , y ) for some 0 < m < 1 } is bounded. Let ( x , y ) in M ( T ) and for any t on [0,1], we have m T ( x , y ) = ( m T 1 ( x , y ) , m T 2 ( x , y ) ) .
By ( H 1 ) , we have
| x ( t ) | | T 1 ( x , y ) ( t ) | 1 | Δ | [ b 0 + b 1 x + b 2 y Γ ( α 2 + β 2 + 1 ) i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) + γ 1 ( b 0 + b 1 x + b 2 y ) ξ α ¯ 2 Γ ( α ¯ 2 + 1 ) + a 0 + a 1 x + a 2 y Γ ( α 1 + β 1 + 1 ) + | Δ 1 | ( a 0 + a 1 x + a 2 y Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + γ 2 ( a 0 + a 1 x + a 2 y ) η α ¯ 1 Γ ( α ¯ 1 + 1 ) + b 0 + b 1 x + b 2 y Γ ( α 2 + β 2 + 1 ) ) ] + a 0 + a 1 x + a 2 y Γ ( α 1 + β 1 + 1 ) = ( a 0 + a 1 x + a 2 y ) ( | Δ 1 | | Δ | Γ ( α 1 + β 1 + 1 ) j = 1 q 0 1 τ α 1 + β 1 d K j ( τ ) + 1 | Δ | Γ ( α 1 + β 1 + 1 ) + | Δ 1 | γ 2 η α ¯ 1 | Δ | Γ ( α ¯ 1 + 1 ) + 1 Γ ( α 1 + β 1 + 1 ) ) + ( b 0 + b 1 x + b 2 y ) ( γ 1 ξ α ¯ 2 | Δ | Γ ( α ¯ 2 + 1 ) + | Δ 1 | | Δ | Γ ( α 2 + β 2 + 1 ) + 1 | Δ | Γ ( α 2 + β 2 + 1 ) × i = 1 p 0 1 τ α 2 + β 2 d H i ( τ ) ) .
So we deduce
x ( a 0 + a 1 x + a 2 y ) M 1 + ( b 0 + b 1 x + b 2 y ) M 2 .
Using the same proof process, we get
y ( a 0 + a 1 x + a 2 y ) M 4 + ( b 0 + b 1 x + b 2 y ) M 3 .
By (17) and (18), we have
( x , y ) = x + y a 0 ( M 1 + M 4 ) + b 0 ( M 2 + M 3 ) + [ a 1 ( M 1 + M 4 ) + b 1 ( M 2 + M 3 ) ] x + [ a 2 ( M 1 + M 4 ) + b 2 ( M 2 + M 3 ) ] y = a 0 ( M 1 + M 4 ) + b 0 ( M 2 + M 3 ) + M 7 x + M 8 y a 0 ( M 1 + M 4 ) + b 0 ( M 2 + M 3 ) + ρ ( x , y ) .
For ρ < 1 , we obtain
( x , y ) a 0 ( M 1 + M 4 ) + b 0 ( M 2 + M 3 ) 1 ρ , ( x , y ) M ( T ) .
Hence, we prove M ( T ) is a bounded set.
By using the alternative theorem of Leray–Schauder, there exists x X that satisfy T x = x , therefore, coupled function ( x , y ) satisfy system (1) and integral boundary condition (2). □

4. Example

Let α 1 = 1 3 , H 1 ( t ) = 2 t , t [ 0 , 1 ] , α 2 = 5 6 , β 1 = 5 4 , K 1 = t , t [ 0 , 1 ] , β 2 = 7 5 , p = 2 , q = 1 , γ 1 = 2 , γ 2 = 3 , δ 1 = 3 7 , δ 2 = 8 5 , ξ = 1 5 , η = 1 3 , H 2 ( t ) = { 0 , t [ 0 , 1 4 ) ; 3 , t [ 1 4 , 1 ] } .
We consider the following specific fractional order systems
D 0 + 1 3 ( D 0 + 5 4 x ( t ) ) + f ( t , x ( t ) , y ( t ) ) = 0 , t [ 0 , 1 ] , D 0 + 5 6 ( D 0 + 7 5 y ( t ) ) + g ( t , x ( t ) , y ( t ) ) = 0 , t [ 0 , 1 ] ,
supplemented with the condition
D 0 + 5 4 x ( 0 ) = 0 , x ( 0 ) = 0 , x ( 1 ) = 2 I 0 + 3 7 y ( 1 5 ) + 2 0 1 y ( t ) d t + 3 y ( 1 4 ) , D 0 + 7 5 y ( 0 ) = 0 , y ( 0 ) = 0 , y ( 1 ) = 3 I 0 + 8 5 x ( 1 3 ) + 0 1 x ( t ) d t .
We obtain Δ 3.2945773664941695 0 . By calculation, we have M 4 0.3398202114 6365704 , M 3 0.6299976999210883 , M 2 0.5353700439729107 , M 1 1.2401800473948743 .
Example 1.
We choose
f ( t , u 1 , v 1 ) = 1 t 3 + 3 + t 8 u 1 1 5 sin v 1 , g ( t , u 1 , v 1 ) = t t 2 + 12 t 4 arctan u 1 + | v 1 | 15 + | v 1 | ,
for all t on [0,1], u 1 , v 1 in R. Then, we get the following estimates
| f ( t , u 1 , v 1 ) f ( t , u 2 , v 2 ) | 1 5 ( | u 1 u 2 | + | v 1 v 2 | ) .
Thus, K = 1 5 , moreover,
| g ( t , u 1 , v 1 ) g ( t , u 2 , v 2 ) | 1 4 ( | u 1 u 2 | + | v 1 v 2 | ) .
Thus, L = 1 4 . Hence, K ( M 1 + M 4 ) + L ( M 2 + M 3 ) 0.6073419877452061 < 1 . So the condition ( H 2 ) holds, and by Theorem 1, there is a couple function ( x ( t ) , y ( t ) ) satisfies the systems (19) and (20).
Example 2.
We choose
f ( t , u , v ) = t + 1 5 1 t + 8 sin u + 1 12 v , g ( t , u , v ) = e t t 2 + 3 + 5 8 arctan u + 1 6 v ,
for all t on [0,1], u 1 , v 1 in R. Then, we get the following estimates
| f ( t , u , v ) | 2 5 + 1 8 | u | + 1 12 | v | , | g ( t , u , v ) | 1 3 + 5 8 | u | + 1 6 | v | ,
for all t on [0,1], u 1 , v 1 in R. Since the assumption ( H 1 ) , we get a 0 = 2 5 , a 1 = 1 8 , a 2 = 1 12 , b 0 = 1 3 , b 1 = 5 8 and b 2 = 1 6 . Thus, we obtain M 7 0.9258548722910658 , M 8 0.3258946455538774 , and ρ = max { M 7 , M 8 } = M 7 < 1 . Hence, by Theorem 2, we conclude that problem (19) and (20) have at least one solution ( x ( t ) , y ( t ) ) , t [ 0 , 1 ] .

Author Contributions

Conceptualization, Y.M. and D.J.; methodology, Y.M.; software, Y.M.; validation, Y.M. and D.J.; formal analysis, Y.M.; investigation, Y.M.; resources, Y.M.; data curation, Y.M.; writing—original draft preparation, Y.M.; writing—review and editing, D.J; visualization, Y.M.; supervision, D.J; project administration, D.J.; funding acquisition, D.J. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Natural Science Foundation of Tianjin (No. (19JCYBJC30700)).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank to the anonymous reviewers for their help with this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Amman, H. Parabolic Evolution Equations with Nonlinear Boundary Conditions. In Proceedings of Symposia in Pure Mathematics; American Mathematical Society: Providence, RI, USA, 1986; Volume 45, pp. 17–27. [Google Scholar]
  2. Deng, K. Global existence and blow-up for a system of heat equations with nonlinear boundary condition. Math. Methods Appl. Sci. 1995, 18, 307–315. [Google Scholar] [CrossRef]
  3. Aronson, D.G. A comparison method for stability analysis of nonlinear parabolic problems. SIAM Rev. 1978, 20, 245–264. [Google Scholar] [CrossRef]
  4. Henderson, J.; Luca, R. On a system of Riemann-Liouville fractional boundary value problems. Commun. Appl. Nonlinear Anal. 2016, 23, 1–19. [Google Scholar]
  5. Henderson, J.; Luca, R.; Tudorache, A. Positive Solutions for a System of Coupled Semipositone Fractional Boundary Value Problems with Sequential Fractional Derivatives. Mathematics 2021, 9, 753. [Google Scholar] [CrossRef]
  6. Tudorache, A.; Luca, R. Positive solutions for a system of Riemann-Liouville fractional boundary value problems with p-Laplacian operators. Adv. Differ. Equ. 2020, 2020, 292. [Google Scholar] [CrossRef]
  7. Zhong, Q.; Zhang, X.; Shao, Z. Positive solutions for singular higher- order semipositone fractional differential equations with conjugate type integral condi- tions. J. Nonlinear Sci. Appl. 2017, 10, 4983–5001. [Google Scholar] [CrossRef]
  8. Henderson, J.; Luca, R. Existence of positive solutions for a singular fractional boundary value problem. Nonlinear Anal. 2017, 22, 99–114. [Google Scholar] [CrossRef]
  9. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Albideewi, A.F. A study of a coupled system of Hadamard fractional differential equations with nonlocal coupled initial-multipoint conditions. Adv. Differ. Equ. 2021, 2021, 33. [Google Scholar] [CrossRef]
  10. Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2020, 6, 168–194. [Google Scholar] [CrossRef]
  11. Jessada, T.; Ntouyas, S.K.; Asawasamrit, S.; Promsakon, C. Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain. Open Math. 2017, 15, 645–666. [Google Scholar] [CrossRef]
  12. Thiramanus, P.; Ntouyas, S.K.; Tariboon, J. Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 2016, 2016, 83. [Google Scholar] [CrossRef] [Green Version]
  13. Kiataramkul, C.; Yukunthorn, W.; Ntouyas, S.K.; Tariboon, J. Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions. Axioms 2021, 10, 174. [Google Scholar] [CrossRef]
  14. Tudorache, A.; Luca, R. Existence of positive solutions for a semipositone boundary value problem with sequential fractional derivatives. Math. Methods Appl. Sci. 2021, 44, 14451–14469. [Google Scholar] [CrossRef]
  15. Ahmad, B.; Luca, R. Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions. Chaos Solitons Fractals 2017, 104, 378–388. [Google Scholar] [CrossRef]
  16. Laadjal, Z.; Al-Mdallal, Q.M.; Jarad, F. Analysis of a Coupled System of Nonlinear Fractional Langevin Equations with Certain Nonlocal and Nonseparated Boundary Conditions. J. Math. 2021, 2021, 3058414. [Google Scholar] [CrossRef]
  17. Zhang, H.; Li, Y.; Lu, W. Existence and uniqueness of solutions for a coupled system of nonlinear fractional differential equations with fractional integral boundary conditions. J. Nonlinear Sci. Appl. 2016, 9, 2434–2447. [Google Scholar] [CrossRef]
  18. Bai, Z.; Lü, H. Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 2005, 311, 495–505. [Google Scholar] [CrossRef] [Green Version]
  19. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ma, Y.; Ji, D. Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions. Fractal Fract. 2022, 6, 543. https://doi.org/10.3390/fractalfract6100543

AMA Style

Ma Y, Ji D. Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions. Fractal and Fractional. 2022; 6(10):543. https://doi.org/10.3390/fractalfract6100543

Chicago/Turabian Style

Ma, Yuan, and Dehong Ji. 2022. "Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions" Fractal and Fractional 6, no. 10: 543. https://doi.org/10.3390/fractalfract6100543

APA Style

Ma, Y., & Ji, D. (2022). Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions. Fractal and Fractional, 6(10), 543. https://doi.org/10.3390/fractalfract6100543

Article Metrics

Back to TopTop