Initial Boundary Value Problem for a Fractional Viscoelastic Equation of the Kirchhoff Type
Abstract
:1. Introduction
2. Preliminaries
- (i)
- If and , then ;
- (ii)
- If, then.
3. Methods
4. Global Existence of Solutions
5. Asymptotic Behavior of the Solutions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, S.T.; Tsai, L.Y. On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwan. J. Math. 2006, 10, 979–1014. [Google Scholar] [CrossRef]
- Wu, S.T.; Tsai, L.Y. Blow-up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping. Taiwan. J. Math. 2010, 14, 2043–2058. [Google Scholar] [CrossRef]
- Yao, S.W.; Ilhan, E.; Veeresha, P.; Baskonus, H.M. A powerful iterative approach for quintic complex Ginzburg-Landau equation within the frame of fractional operator. Fractals 2021, 29, 2140023. [Google Scholar] [CrossRef]
- Applebaum, D. Lévy processes-from probability to finance and quantum groups. Not. Am. Math. Soc. 2004, 51, 1336–1347. [Google Scholar]
- Baishya, C.; Veeresha, P. Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel. Proc. R. Soc. Ser. A 2021, 477, 20210438. [Google Scholar] [CrossRef]
- Caffarelli, L. Non-local diffusions, drifts and games. In Nonlinear Partial Differential Equations, Abel Symp., 7; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–52. [Google Scholar]
- Dubey, P.R.S.; Goswami, H.M.; Baskonus, T.; Gomati, A. On the Existence and Uniqueness Analysis of Fractional Blood Glucose-Insulin Minimal Model. Int. J. Model. Simul. Sci. Comput. 2022. [Google Scholar] [CrossRef]
- Kumar, A.; Prakash, A.; Baskonus, H.M. The epidemic COVID-19 model via Caputo-Fabrizio fractional operator. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Valdinoci, E. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 2009, 49, 33–44. [Google Scholar]
- Vázquez, J.L. Recent progress in the theory of nonlinear diffusion with fractional laplacian operators. Discret. Contin. Dyn. Syst. 2014, 7, 857–885. [Google Scholar] [CrossRef]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Autuori, G.; Fiscella, A.; Pucci, P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 2015, 125, 699–714. [Google Scholar] [CrossRef]
- Bisci, G.M.; Vilasi, L. On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math. 2017, 19, 1550088. [Google Scholar] [CrossRef]
- Pucci, P.; Xiang, M.; Zhang, B. Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 2016, 5, 27–55. [Google Scholar] [CrossRef]
- Wang, F.; Hu, D.; Xiang, M. Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems. Adv. Nonlinear Anal. 2021, 10, 636–658. [Google Scholar] [CrossRef]
- Lin, Q.; Tian, X.; Xu, R.; Zhang, M. Blow up and blow up time for degenerate Kirchhoff- type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 2095–2107. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Yang, Y.; Liu, Y. Global well-posedness for strongly damped viscoelastic wave equation. Appl. Anal. 2013, 92, 138–157. [Google Scholar] [CrossRef]
- Xiang, M.; Hu, D. Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 4609–4629. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, P.; Da, C. Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy. Ann. Polon. Math. 2016, 117, 89–99. [Google Scholar] [CrossRef]
- Haraux, A.; Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 1988, 100, 191–206. [Google Scholar] [CrossRef]
- Zuazua, E. Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial. Differ. Equ. 1990, 15, 205–235. [Google Scholar]
- Servadei, R.; Valdinoci, E. Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R.; Valdinoci, E. Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 2013, 33, 2105–2137. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 2015, 367, 67–102. [Google Scholar] [CrossRef]
- Liu, Y. Long-time behavior of a class of viscoelastic plate equations. Elec. Res. Arch. 2020, 28, 549–567. [Google Scholar] [CrossRef] [Green Version]
- Sattinger, D.H. On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 1968, 30, 148–172. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Cavalcanti, V.N.D.; Martinez, P. Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J. Differ. Equ. 2004, 203, 119–158. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Avila, J.A. A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations. Nonlinear Anal. 2003, 52, 1111–1127. [Google Scholar] [CrossRef]
- Gazzola, F.; Squassina, M. Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 2006, 23, 185–207. [Google Scholar] [CrossRef]
- Lian, W.; Xu, R. Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 2020, 9, 613–632. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
- Liu, Y.; Li, W. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 4367–4381. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, J.; Jiao, Y. A class of fourth order damped wave equations with arbitrary positive initial energy. Proc. Edinb. Math. Soc. 2019, 62, 165–178. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, T.; Li, W. Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic equations. Nonlinear Anal. 2020, 196, 111759. [Google Scholar] [CrossRef]
- Payne, L.E.; Sattinger, D.H. Sadle points and instability of nonlinear hyperbolic equations. Israel J. Math. 1975, 22, 273–303. [Google Scholar] [CrossRef]
- Tsutsumi, M. On solutions of semilinear differential equations in a Hilbert space. Math. Japon. 1972, 17, 173–193. [Google Scholar]
- Vitillaro, E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 1999, 149, 155–182. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, M.; Chen, S.; Yang, Y.; Shen, J. The initial-boundary value problems for a class of six order nonlinear wave equation. Discret. Contin. Dyn. Syst. 2017, 37, 5631–5649. [Google Scholar] [CrossRef]
- Veeresha, P. Analysis of the spread of infectious diseases with the effects of consciousness programs by media using three fractional operators. In Methods of Mathematical Modelling: Infectious Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 113–135. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, L. Initial Boundary Value Problem for a Fractional Viscoelastic Equation of the Kirchhoff Type. Fractal Fract. 2022, 6, 581. https://doi.org/10.3390/fractalfract6100581
Liu Y, Zhang L. Initial Boundary Value Problem for a Fractional Viscoelastic Equation of the Kirchhoff Type. Fractal and Fractional. 2022; 6(10):581. https://doi.org/10.3390/fractalfract6100581
Chicago/Turabian StyleLiu, Yang, and Li Zhang. 2022. "Initial Boundary Value Problem for a Fractional Viscoelastic Equation of the Kirchhoff Type" Fractal and Fractional 6, no. 10: 581. https://doi.org/10.3390/fractalfract6100581
APA StyleLiu, Y., & Zhang, L. (2022). Initial Boundary Value Problem for a Fractional Viscoelastic Equation of the Kirchhoff Type. Fractal and Fractional, 6(10), 581. https://doi.org/10.3390/fractalfract6100581