On Starlike Functions of Negative Order Defined by q-Fractional Derivative
Abstract
:1. Introduction
- 1.
- is univalent in E.
- 2.
- 3.
- When , is convex univalent function in E.
- 1.
- If , we have
- 2.
- For , we have
- 3.
- When , we obtain
2. The Class
3. The Class
3.1. Coefficient Inequalities
3.2. Distortion Theorems
3.3. Covering Results
3.4. Radius of q-Convexity for
3.5. Integral Operators
3.6. Extreme Points for
3.7. Application of the Fractional Calculus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. In q-functions and certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Abu-Risha, M.H.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 27, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Aldawish, I.; Ibrahim, R.W. Solvability of a New q-Differential Equation Related to q-Differential Inequality of a Special Type of Analytic Functions. Fractal Fract. 2021, 5, 228. [Google Scholar] [CrossRef]
- Mansour, Z.S.I. Linear sequential q-difference equations of fractional order. Fract. Calc. Appl. Anal. 2009, 12, 159–178. [Google Scholar]
- Ismail, M.E.H.; Markes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Rajković, P.M.; Marinković, S.D.; Stanković, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- Selvakumaran, K.A.; Purohit, S.D.; Secer, A.; Bayram, M. Convexity of certain q-integral operators of p-valent functions. Abs. Appl. Anal. 2014, 2014, 925902. [Google Scholar]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A.; Gupta, V. On the Durrmeyer type modification of the q-Baskakovtype operators. Nonlinear Anal. Theory Method Appl. 2010, 72, 1171–1180. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in te unit disk. J. Inequal. Appl. 2006, 17231. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi operator. TWMS J. Pure. App. Math. 2017, 8, 3–11. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fraction q-calculus operators. Math. Scand. 2011, 109, 55–77. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. arXiv 2014, arXiv:1404.3268. [Google Scholar] [CrossRef] [Green Version]
- Wongsaijai, B.; Sukantamala, N. Certain Properties of Some Families of Generalized Starlike Functions with respect to q-Calculus. Abs. Appl. Anal. 2016, 2016, 6180140. [Google Scholar] [CrossRef] [Green Version]
- Nazir, M.; Bukhari, S.Z.H.; Ahmad, I.; Ashfaq, M.; Raza, M.A. Starlikeness of Normalized Bessel Functions with Symmetric Points. J. Funct. Spaces 2021, 2021, 9451999. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Shakeel, A.; Kutbi, M.A. Coefficient Bounds of Kamali-Type Starlike Functions Related with a Limacon-Shaped Domain. J. Funct. Spaces 2021, 2021, 4395574. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Kermausuor, S. Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals. J. Nonlinear Sci. Appl. 2019, 8, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Hieu, L.M.; Hanh, T.T.H.; Thanh, D.N. A finite-difference scheme for initial boundary value problem of the Gamma equation in the pricing of financial derivatives. J. Math. Comput. Sci. 2020, 20, 283–291. [Google Scholar] [CrossRef] [Green Version]
- El-hady, E.; Öğrekçi, S. On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative. J. Math. Comput. Sci. 2021, 22, 325–332. [Google Scholar]
- Sokół, J. A certain class of starlike functions. Comp. Math. Appl. 2011, 62, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volume 1, p. 2. [Google Scholar]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Çetinkaya, A.; Polatoglu, Y. q-Harmonic mappings for which analytic part is q-convex functions of complex order. Hacet. J. Maths Stats 2018, 47, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E. A Comprehensive Treatment of q-Calculus; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Goodman, A.H. Univalent functions and non-analytic curves. Proc. Am. Soc. 1975, 598–601. [Google Scholar]
- Schlid, A. On a class of functions Schlid in the unit circle. Proc. Am. Math. Soc. 1954, 115–120. [Google Scholar] [CrossRef]
- Bangerezako, G. Variational calculus on q-nonuniform lattices. J. Math. Anal. Appl. 2005, 306, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. https://doi.org/10.3390/fractalfract6010030
Riaz S, Nisar UA, Xin Q, Malik SN, Raheem A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal and Fractional. 2022; 6(1):30. https://doi.org/10.3390/fractalfract6010030
Chicago/Turabian StyleRiaz, Sadia, Ubaid Ahmed Nisar, Qin Xin, Sarfraz Nawaz Malik, and Abdul Raheem. 2022. "On Starlike Functions of Negative Order Defined by q-Fractional Derivative" Fractal and Fractional 6, no. 1: 30. https://doi.org/10.3390/fractalfract6010030
APA StyleRiaz, S., Nisar, U. A., Xin, Q., Malik, S. N., & Raheem, A. (2022). On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal and Fractional, 6(1), 30. https://doi.org/10.3390/fractalfract6010030