Fox H-Functions in Self-Consistent Description of a Free-Electron Laser
Abstract
:1. Introduction
2. Fox H-Function in Laplace Space
Limit Case
3. Series Expansion and Asymptotics
Asymptotics of Small and Series Expansion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Artioli, M.; Dattoli, G.; Licciardi, S.; Pagnutti, S. Fractional Derivatives, Memory Kernels and Solution of a Free Electron Laser Volterra Type Equation. Mathematics 2017, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, R.; Casagrande, F.; Cerchioni, G.; De Salvo Souza, L.; Pierini, P.; Piovella, N. Physics of the High-Gain FEL and Superradiance. Riv. Del Nuovo C. 1990, 13, 2–69. [Google Scholar]
- Colson, W. Classical Free Electron Laser theory. In Laser Handbook; Colson, W., Pellegrini, C., Renieri, A., Eds.; North Holland: Amsterdam, The Netherlands, 1990; Volume VI. [Google Scholar]
- Dattoli, G.; Renieri, A.; Torre, A. Lectures on the Free Electron Laser Theory and Related Topics; World Scientific: Singapore, 1993. [Google Scholar]
- Saldin, E.; Schneidmiller, E.; Yurkov, M. The Physics of Free Electron Laser; Springer: Heidelberg/Berlin, Germany, 2000. [Google Scholar]
- Kling, P.; Giese, E.; Endrich, R.; Preiss, P.; Sauerbrey, R.; Schleich, W. What defines the quantum regime of the free-electron laser? New J. Phys. 2015, 17, 123019. [Google Scholar] [CrossRef]
- Piovella, N.; Volpe, L. A Review of High-Gain Free-Electron Laser Theory. Atoms 2021, 9, 28. [Google Scholar] [CrossRef]
- Dattoli, G.; Torre, A.; Centioli, C.; Richetta, M. Free electron laser operation in the intermediate gain region. IEEE J. Quantum Electron. 1989, 25, 2327–2331. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Capelas de Oliveira, E. Solved Exercises in Fractional Calculus; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Iomin, A.; Mèndez, V.; Horsthemke, W. Fractional Dynamics in Comb-like Structures; World Scientific: Singapore, 2018. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Elsevier Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Jahnke, E.; Emde, F.; Lösch, F. Tables of Higher Functions; McGraw-Hill: New York, NY, USA, 1960. [Google Scholar]
- Boyadjiev, L.; Dobner, H.J. Fractional free electron laser equation. Integral Transform. Spec. Funct. 2001, 11, 113–136. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with Non-Local and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iomin, A. Fox H-Functions in Self-Consistent Description of a Free-Electron Laser. Fractal Fract. 2021, 5, 263. https://doi.org/10.3390/fractalfract5040263
Iomin A. Fox H-Functions in Self-Consistent Description of a Free-Electron Laser. Fractal and Fractional. 2021; 5(4):263. https://doi.org/10.3390/fractalfract5040263
Chicago/Turabian StyleIomin, Alexander. 2021. "Fox H-Functions in Self-Consistent Description of a Free-Electron Laser" Fractal and Fractional 5, no. 4: 263. https://doi.org/10.3390/fractalfract5040263