The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation
Abstract
:1. Introduction
2. Modified Riemann–Liouville Derivative and Properties
3. Wave Equation for S-FS-CNSE Equation
4. The Exact Solutions of the S-FS-CNSE
5. The Effect of Noise on the Solutions of S-FS-CNSE
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorenflo, R.; Mainardi, F. Random walk models for space–fractional diffusion processes. Fract. Calculus Appl. Anal. 1998, 1, 167–191. [Google Scholar]
- Raberto, M.; Scalas, E.; Mainardi, F. Waiting-times and returns in high-frequency financial data: An empirical study. Phys. A Stat. Its Appl. 2002, 314, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Wyss, W. The fractional Black–Scholes equation. Fract. Calculus Appl. Anal. 2000, 3, 51–61. [Google Scholar]
- Yuste, S.B.; Lindenberg, K. Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 2001, 87, 118301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, N.; Wu, R.; Mohammed, W.W. Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting. Math. Comput. Simul. 2021, 188, 102–119. [Google Scholar] [CrossRef]
- Khater, M.M.A. Novel explicit breath wave and numerical solutions of an Atangana conformable fractional Lotka–Volterra model. Alex. Eng. J. 2021, 60, 4735–4743. [Google Scholar] [CrossRef]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. 2000, 61, 132–138. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, W.W.; Alesemi, M.; Albosaily, S.; Iqbal, N.; El-Morshedy, M. The exact solutions of stochastic fractional-space Kuramoto-Sivashinsky equation by using (G’/G)-expansion method. Mathematics 2021, 9, 2712. [Google Scholar] [CrossRef]
- Khater, M.M.A.; Lu, D. Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation. Mod. Phys. Lett. B 2021, 35, 2150324. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an A + B → C reaction–subdiffusion process. Phys. Rev. E 2004, 69, 036126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, W.W.; Iqbal, N. Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations. Fractals 2021, 30, 2240033. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Nishino, A.; Umeno, Y.; Wadati, M. Chiral nonlinear Schrödinger equation. Chaos Solitons Fractals 1998, 9, 1063–1069. [Google Scholar] [CrossRef]
- Bulut, H.; Sulaiman, T.A.; Demirdag, B. Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dyn. 2018, 91, 1985–1991. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Younis, M.; Rehman, S.; Eslami, M.; Bilal, M.; Younas, U. New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom. 2021, 16, 38. [Google Scholar] [CrossRef]
- Javid, A.; Raza, N. Chiral solitons of the (1 + 2)-dimensional nonlinear Schrodinger’s equation. Mod. Phys. Lett. B 2019, 33, 1950401. [Google Scholar] [CrossRef]
- Eslami, M. Trial solution technique to chiral nonlinear Schrödinger’s equation in (1 + 2)-dimensions. Nonlinear Dyn. 2016, 85, 813–816. [Google Scholar] [CrossRef]
- Biswas, A.; Mirzazadeh, M. Dark optical solitons with power law nonlinearity using G′/G-expansion. Optik 2014, 125, 4603–4608. [Google Scholar] [CrossRef]
- Cheemaa, N.; Chen, S.; Seadawy, A.R. Chiral soliton solutions of perturbed chiral nonlinear Schrödinger equation with its applications in mathematical physics. Int. J. Mod. Phys. B 2020, 34, 2050301. [Google Scholar] [CrossRef]
- Alshahrani, B.; Yakout, H.A.; Khater, M.M.A.; Abdel-Aty, A.; Mahmoud, E.E.; Baleanu, D.; Eleuch, H. Accurate novel explicit complex wave solutions of the (2+ 1)-dimensional Chiral nonlinear Schrödinger equation. Results Phys. 2021, 23, 104019. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yusuf, A.; Abdel-Khalek, S.; Bayram, M.; Ahmad, H. Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear chiral Schrödinger equation. Results Phys. 2020, 19, 103604. [Google Scholar] [CrossRef]
- Rehman, H.; Imran, M.A.; Bibi, M.; Riaz, M.; Akgül, A. New soliton solutions of the 2D-chiral nonlinear Schrodinger equation using two integration schemes. Math. Methods Appl. Sci. 2021, 44, 5663–5682. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Mohammed, W.W. The impact of multiplicative noise on the solution of the Chiral nonlinear Schrödinger equation. Phys. Scr. 2020, 95, 085222. [Google Scholar] [CrossRef]
- Albosaily, S.; Mohammed, W.W.; Aiyashi, M.A. Exact solutions of the (2+ 1)-dimensional stochastic chiral nonlinear Schrödinger equation. Symmetry 2020, 12, 1874. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- He, J.H.; Elegan, S.K.; Li, Z.B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376, 257–259. [Google Scholar] [CrossRef]
- Aksoy, E.; Kaplan, M.; Bekir, A. Exponential rational function method for space–time fractional differential equations. Waves Random Complex Media 2016, 26, 142–151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, W.W.; Bazighifan, O.; Al-Sawalha, M.M.; Almatroud, A.O.; Aly, E.S. The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. Fractal Fract. 2021, 5, 262. https://doi.org/10.3390/fractalfract5040262
Mohammed WW, Bazighifan O, Al-Sawalha MM, Almatroud AO, Aly ES. The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. Fractal and Fractional. 2021; 5(4):262. https://doi.org/10.3390/fractalfract5040262
Chicago/Turabian StyleMohammed, Wael W., Omar Bazighifan, Mohammed M. Al-Sawalha, A. Othman Almatroud, and Elkhateeb S. Aly. 2021. "The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation" Fractal and Fractional 5, no. 4: 262. https://doi.org/10.3390/fractalfract5040262
APA StyleMohammed, W. W., Bazighifan, O., Al-Sawalha, M. M., Almatroud, A. O., & Aly, E. S. (2021). The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. Fractal and Fractional, 5(4), 262. https://doi.org/10.3390/fractalfract5040262