# The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modified Riemann–Liouville Derivative and Properties

## 3. Wave Equation for S-FS-CNSE Equation

## 4. The Exact Solutions of the S-FS-CNSE

## 5. The Effect of Noise on the Solutions of S-FS-CNSE

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gorenflo, R.; Mainardi, F. Random walk models for space–fractional diffusion processes. Fract. Calculus Appl. Anal.
**1998**, 1, 167–191. [Google Scholar] - Raberto, M.; Scalas, E.; Mainardi, F. Waiting-times and returns in high-frequency financial data: An empirical study. Phys. A Stat. Its Appl.
**2002**, 314, 749–755. [Google Scholar] [CrossRef] [Green Version] - Wyss, W. The fractional Black–Scholes equation. Fract. Calculus Appl. Anal.
**2000**, 3, 51–61. [Google Scholar] - Yuste, S.B.; Lindenberg, K. Subdiffusion-limited A + A reactions. Phys. Rev. Lett.
**2001**, 87, 118301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Iqbal, N.; Wu, R.; Mohammed, W.W. Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting. Math. Comput. Simul.
**2021**, 188, 102–119. [Google Scholar] [CrossRef] - Khater, M.M.A. Novel explicit breath wave and numerical solutions of an Atangana conformable fractional Lotka–Volterra model. Alex. Eng. J.
**2021**, 60, 4735–4743. [Google Scholar] [CrossRef] - Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev.
**2000**, 61, 132–138. [Google Scholar] [CrossRef] - Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep.
**2000**, 339, 1–77. [Google Scholar] [CrossRef] - Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos
**1997**, 7, 753–764. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mohammed, W.W.; Alesemi, M.; Albosaily, S.; Iqbal, N.; El-Morshedy, M. The exact solutions of stochastic fractional-space Kuramoto-Sivashinsky equation by using (G’/G)-expansion method. Mathematics
**2021**, 9, 2712. [Google Scholar] [CrossRef] - Khater, M.M.A.; Lu, D. Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation. Mod. Phys. Lett. B
**2021**, 35, 2150324. [Google Scholar] [CrossRef] - Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. Water Resour. Res.
**2000**, 36, 1413–1423. [Google Scholar] [CrossRef] - Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math.
**2004**, 166, 209–219. [Google Scholar] [CrossRef] [Green Version] - Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an A + B → C reaction–subdiffusion process. Phys. Rev. E
**2004**, 69, 036126. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mohammed, W.W.; Iqbal, N. Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations. Fractals
**2021**, 30, 2240033. [Google Scholar] [CrossRef] - Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Nishino, A.; Umeno, Y.; Wadati, M. Chiral nonlinear Schrödinger equation. Chaos Solitons Fractals
**1998**, 9, 1063–1069. [Google Scholar] [CrossRef] - Bulut, H.; Sulaiman, T.A.; Demirdag, B. Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dyn.
**2018**, 91, 1985–1991. [Google Scholar] [CrossRef] - Rezazadeh, H.; Younis, M.; Rehman, S.; Eslami, M.; Bilal, M.; Younas, U. New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom.
**2021**, 16, 38. [Google Scholar] [CrossRef] - Javid, A.; Raza, N. Chiral solitons of the (1 + 2)-dimensional nonlinear Schrodinger’s equation. Mod. Phys. Lett. B
**2019**, 33, 1950401. [Google Scholar] [CrossRef] - Eslami, M. Trial solution technique to chiral nonlinear Schrödinger’s equation in (1 + 2)-dimensions. Nonlinear Dyn.
**2016**, 85, 813–816. [Google Scholar] [CrossRef] - Biswas, A.; Mirzazadeh, M. Dark optical solitons with power law nonlinearity using G′/G-expansion. Optik
**2014**, 125, 4603–4608. [Google Scholar] [CrossRef] - Cheemaa, N.; Chen, S.; Seadawy, A.R. Chiral soliton solutions of perturbed chiral nonlinear Schrödinger equation with its applications in mathematical physics. Int. J. Mod. Phys. B
**2020**, 34, 2050301. [Google Scholar] [CrossRef] - Alshahrani, B.; Yakout, H.A.; Khater, M.M.A.; Abdel-Aty, A.; Mahmoud, E.E.; Baleanu, D.; Eleuch, H. Accurate novel explicit complex wave solutions of the (2+ 1)-dimensional Chiral nonlinear Schrödinger equation. Results Phys.
**2021**, 23, 104019. [Google Scholar] [CrossRef] - Sulaiman, T.A.; Yusuf, A.; Abdel-Khalek, S.; Bayram, M.; Ahmad, H. Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear chiral Schrödinger equation. Results Phys.
**2020**, 19, 103604. [Google Scholar] [CrossRef] - Rehman, H.; Imran, M.A.; Bibi, M.; Riaz, M.; Akgül, A. New soliton solutions of the 2D-chiral nonlinear Schrodinger equation using two integration schemes. Math. Methods Appl. Sci.
**2021**, 44, 5663–5682. [Google Scholar] [CrossRef] - Abdelrahman, M.; Mohammed, W.W. The impact of multiplicative noise on the solution of the Chiral nonlinear Schrödinger equation. Phys. Scr.
**2020**, 95, 085222. [Google Scholar] [CrossRef] - Albosaily, S.; Mohammed, W.W.; Aiyashi, M.A. Exact solutions of the (2+ 1)-dimensional stochastic chiral nonlinear Schrödinger equation. Symmetry
**2020**, 12, 1874. [Google Scholar] [CrossRef] - Jumarie, G. Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl.
**2006**, 51, 1367–1376. [Google Scholar] [CrossRef] [Green Version] - He, J.H.; Elegan, S.K.; Li, Z.B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A
**2012**, 376, 257–259. [Google Scholar] [CrossRef] - Aksoy, E.; Kaplan, M.; Bekir, A. Exponential rational function method for space–time fractional differential equations. Waves Random Complex Media
**2016**, 26, 142–151. [Google Scholar] [CrossRef]

**Figure 1.**Graph of solution $\left|{\phi}_{3}\right|$ in Equation (13) with ${\omega}_{1}=-1,$ ${\omega}_{2}=-1$ and $\alpha =1$.

**Figure 2.**Graph of solution $\left|{\phi}_{3}\right|$ in Equation (15) with ${\omega}_{1}=-1,$ ${\omega}_{2}=-1$ and $\alpha =0.5$.

**Figure 3.**Graph of solution $\left|{\phi}_{5}\right|$ in Equation (15) with ${\omega}_{1}=-1,\phantom{\rule{4pt}{0ex}}{\omega}_{2}=-2$ and $\alpha =1$.

**Figure 4.**Graph of solution $\left|{\phi}_{5}\right|$ in Equation (13) with ${\omega}_{1}=-1,\phantom{\rule{4pt}{0ex}}{\omega}_{2}=-2$ and $\alpha =0.5$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mohammed, W.W.; Bazighifan, O.; Al-Sawalha, M.M.; Almatroud, A.O.; Aly, E.S.
The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. *Fractal Fract.* **2021**, *5*, 262.
https://doi.org/10.3390/fractalfract5040262

**AMA Style**

Mohammed WW, Bazighifan O, Al-Sawalha MM, Almatroud AO, Aly ES.
The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. *Fractal and Fractional*. 2021; 5(4):262.
https://doi.org/10.3390/fractalfract5040262

**Chicago/Turabian Style**

Mohammed, Wael W., Omar Bazighifan, Mohammed M. Al-Sawalha, A. Othman Almatroud, and Elkhateeb S. Aly.
2021. "The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation" *Fractal and Fractional* 5, no. 4: 262.
https://doi.org/10.3390/fractalfract5040262