Some Oscillation Results for Even-Order Differential Equations with Neutral Term
Abstract
:1. Introduction
- (P1)
- (P2)
- (P3)
- (P4)
- (P5)
- (P6)
2. Main Results
3. Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 412. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.H.; Wong, J.S.W. Oscillation and non-oscillation theorems for superlinear Emden-Fowler equations of the fourth-order. Ann. Mat. Pura Appl. 2004, 183, 25–43. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Yan, J.R.; Gao, L. Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients. Comput. Math. Appl. 2010, 59, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Li, T.X.; Rogovchenko, Y.V. Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 2016, 61, 35–41. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.X.; Zhang, C.H. A newapproach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar]
- Moaaz, O.; El-Nabulsi, R.A.; Muhib, A.; Elagan, S.K.; Zakarya, M. New Improved Results for Oscillation of Fourth-Order Neutral Differential Equations. Mathematics 2021, 9, 2388. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Li, T.X. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 2014, 37, 72–76. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.X.; Zhang, C.H. Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptopic properties. Appl. Math. Comput. 2015, 266, 481–490. [Google Scholar] [CrossRef]
- Park, C.; Moaaz, O.; Bazighifan, O. Oscillation Results for Higher Order Differential Equations. Mathematics 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yan, J. Oscillation behavior of even order neutral differential equations with variable coefficients. Appl. Math. Lett. 2006, 19, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 2019, 336. [Google Scholar]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi linear neutral differential equations. Adv. Differ. Equ. 2011, 2011, 45. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J.; Li, T.X. Oscillation results for even-order quasi-linear neutral functional differential equations. Electron. J. Differ. Equ. 2011, 2011, 1–9. [Google Scholar]
- Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of Even-Order Neutral Delay Differential Equations. Adv. Differ. Equ. 2010, 2010, 184180. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Zhang, S.Y.; Wang, Q.R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216, 2837–2848. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef]
- Thandapani, E.; Li, T.X. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. (BRNO) Tomus 2011, 47, 181–199. [Google Scholar]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 297. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.W.; Xu, R. Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments. Appl. Math. Comput. 2007, 190, 458–464. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kandari, M.; Bazighifan, O. Some Oscillation Results for Even-Order Differential Equations with Neutral Term. Fractal Fract. 2021, 5, 246. https://doi.org/10.3390/fractalfract5040246
Al-Kandari M, Bazighifan O. Some Oscillation Results for Even-Order Differential Equations with Neutral Term. Fractal and Fractional. 2021; 5(4):246. https://doi.org/10.3390/fractalfract5040246
Chicago/Turabian StyleAl-Kandari, Maryam, and Omar Bazighifan. 2021. "Some Oscillation Results for Even-Order Differential Equations with Neutral Term" Fractal and Fractional 5, no. 4: 246. https://doi.org/10.3390/fractalfract5040246
APA StyleAl-Kandari, M., & Bazighifan, O. (2021). Some Oscillation Results for Even-Order Differential Equations with Neutral Term. Fractal and Fractional, 5(4), 246. https://doi.org/10.3390/fractalfract5040246