Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings
Abstract
:1. Introduction
2. Analysis of LFLVIM
3. Analysis of the Local Fractional Laplace Decomposition Method
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Ling, X.; Zhao, Y.; Jassim, H.K. A Novel Schedule for Solving the Two-Dimensional Diffusion in Fractal Heat Transfer. Therm. Sci. 2015, 19, 99–103. [Google Scholar] [CrossRef]
- Fan, Z.P.; Jassim, H.K.; Rainna, R.K.; Yang, X.J. Adomian Decomposition Method for Three-Dimensional Diffusion Model in Fractal Heat Transfer Involving Local Fractional Derivatives. Therm. Sci. 2015, 19, 137–141. [Google Scholar] [CrossRef]
- Yang, X.J.; Machado, J.A.T.; Srivastava, H.M. A new numerical technique for solving the local fractional diffusion equation: Two dimensional extended differential transform approach. Appl. Math. Comput. 2016, 274, 143–151. [Google Scholar] [CrossRef]
- Jassim, H.K. The Approximate Solutions of Three-Dimensional Diffusion and Wave Equations within Local Fractional Derivative Operator. Abstr. Appl. Anal. 2016, 2016, 2913539. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K. Approximate Solution for Nonlinear Gas Dynamic and Coupled KdV Equations Involving Local Fractional Operator. J. Zankoy Sulaiman Part A 2016, 18, 127–132. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K. Application of the Local Fractional Adomian Decomposition and Series Expansion Methods for Solving Telegraph Equation on Cantor Sets Involving Local Fractional Derivative Operators. J. Zankoy Sulaiman Part A 2015, 17, 15–22. [Google Scholar] [CrossRef]
- Jassim, H.K.; Unlu, C.; Moshokoa, S.P.; Khalique, C.M. Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators. Math. Probl. Eng. 2015, 2015, 309870. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23, 3–8. [Google Scholar]
- Jassim, H.K. New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators. J. Math. 2015, 2015, 684598. [Google Scholar] [CrossRef]
- Yan, S.P.; Jafari, H.; Jassim, H.K. Local Fractional Adomian Decomposition and Function Decomposition Methods for Solving Laplace Equation within Local Fractional Operators. Adv. Math. Phys. 2014, 2014, 161580. [Google Scholar] [CrossRef]
- Yang, A.-M.; Zhang, Y.-Z.; Cattani, C.; Xie, G.-N.; Rashidi, M.M.; Zhou, Y.-J.; Yang, X.-J. Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets. Abstr. Appl. Anal. 2014, 2014, 372741. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Moshokoa, S.P.; Ariyan, V.M.; Tchier, F. Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 2016, 8. [Google Scholar] [CrossRef]
- Yang, A.-M.; Chen, Z.-S.; Srivastava, H.M.; Yang, X.-J. Application of the Local Fractional Series Expansion Method and the Variational Iteration Method to the Helmholtz Equation Involving Local Fractional Derivative Operators. Abstr. Appl. Anal. 2013, 2013, 259125. [Google Scholar] [CrossRef]
- Wang, X.-J.; Zhao, Y.; Cattani, C.; Yang, X.-J. Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator. Math. Probl. Eng. 2014, 2014, 913202. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K.; Al Qurashi, M. Approximate analytical solutions of Goursat problem within local fractional operators. J. Nonlinear Sci. Appl. 2016, 9, 4829–4837. [Google Scholar] [CrossRef]
- Jassim, H.K. The Analytical Solutions for Volterra Integro-Differential Equations Involving Local Fractional Operators by Yang-Laplace Transform. Sahand Commun. Math. Anal. 2017, 6, 69–76. [Google Scholar]
- Jassim, H.K. An Efficient Technique for Solving Linear and Nonlinear Wave Equation within Local Fractional Operators. J. Hyperstruct. 2017, 6, 136–146. [Google Scholar]
- Ziane, D.; Cherif, M.H.; Belghaba, K. Exact solutions for linear systems of local fractional partial differential equations. Malaya J. Mat. 2018, 6, 53–60. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.; Al Qurashi, M.; Baleanu, D. On the existence and uniqueness of solutions for local fractional differential equations. Entropy 2016, 18, 420. [Google Scholar] [CrossRef]
- Bayour, B.; Torres, D.F.M. Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math. 2017, 312, 127–133. [Google Scholar] [CrossRef]
- Su, W.H.; Baleanu, D.; Yang, X.J.; Jafari, H. Damped Wave Equation and Dissipative Wave equation in Fractal Strings within the Local Fractional Variational Iteration Method. Fixed Point Theory Appl. 2013, 2013, 89. [Google Scholar] [CrossRef]
- Hambly, B.M.; Lapidus, M.L. Random Fractal Strings: Their Zeta Functions, Complex Dimensions and Spectral Asymptotics. Trans. Am. Math. Soc. 2006, 1, 285–314. [Google Scholar] [CrossRef]
- Lapidus, M.L.; van Frankenhuijsen, M. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings; Springer: New York, NY, USA, 2006. [Google Scholar]
- Jafari, H.; Jassim, H.K. Solving Laplace Equation within Local Fractional Operators by Using Local Fractional Differential Transform and Laplace Variational Iteration Methods. Nonlinear Dyn. Syst. Theory 2019. in print. [Google Scholar]
- Jafari, H.; Jassim, H.K.; Vahidi, J. Reduced Differential Transform and Variational Iteration Methods for 3D Diffusion Model in Fractal Heat Transfer within Local Fractional Operators. Therm. Sci. 2018, 22, S301–S307. [Google Scholar] [CrossRef]
- Jassim, H.K.; Baleanu, D. A novel approach for Korteweg-de Vries equation of fractional order. J. Appl. Comput. Mech. 2019, 5, 192–198. [Google Scholar]
- Jafari, H.; Kamil, H.J. Local Fractional Variational Iteration Method for Nonlinear Partial Differential Equations within Local Fractional Operators. Appl. Appl. Math. 2015, 10, 1055–1065. [Google Scholar]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Liu, C.F.; Kong, S.S.; Yuan, S.J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2014, 17, 715–721. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleanu, D.; Jassim, H.K. Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings. Fractal Fract. 2019, 3, 26. https://doi.org/10.3390/fractalfract3020026
Baleanu D, Jassim HK. Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings. Fractal and Fractional. 2019; 3(2):26. https://doi.org/10.3390/fractalfract3020026
Chicago/Turabian StyleBaleanu, Dumitru, and Hassan Kamil Jassim. 2019. "Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings" Fractal and Fractional 3, no. 2: 26. https://doi.org/10.3390/fractalfract3020026
APA StyleBaleanu, D., & Jassim, H. K. (2019). Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings. Fractal and Fractional, 3(2), 26. https://doi.org/10.3390/fractalfract3020026