Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces
Abstract
:1. Introduction and Some Preliminaries
2. Preliminaries
3. Main Results
- (I)
- .
- (II)
- and there exist a such that for and each .
- (III)
- , is a differentiable function, for any .
- (IV)
- There exists a constant L such that and:
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equation: An Introduction to Fractional Derivatives, Fractional Differential Equations, to methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1999; p. 198. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific Publishing: Singapore, 2012. [Google Scholar]
- Yavuz, M. Novel Solution Methods for Initial Boundary Value Problems of Fractional Order with Conformable Differentiation. Int. J. Optim. Control Theor. Appl. (IJOCTA) 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Yavuz, M.; Özdemir, N. Numerical inverse Laplace homotopy technique for fractional heat equations. Therm. Sci. 2018, 22, 185–194. [Google Scholar] [CrossRef]
- Avci, D.; Eroglu, B.B.I.; Özdemir, N. Conformable heat equation on a radial symmetric plate. Therm. Sci. 2017, 21, 819–826. [Google Scholar] [CrossRef]
- Özdemir, N.; Yavuz, M. Numerical solution of fractional Black-Scholes equation by using the multivariate Padé approximation. Acta Phys. Pol. A 2017, 132, 1050–1053. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Mekkaoui, T.; Hammouch, Z.; Bulut, H. Active control of a chaotic fractional order economic system. Entropy 2015, 17, 5771–5783. [Google Scholar] [CrossRef]
- Yavuz, M.; Yaşkıran, B. Approximate-analytical solutions of cable equation using conformable fractional operator. New Trends Math. Sci. 2017, 5, 209–219. [Google Scholar] [CrossRef]
- Evirgen, F.; Özdemir, N. A fractional order dynamical trajectory approach for optimization roblem with HPM. In Fractional Dynamics and Control; Baleanu, D., Machado, J.A.T., Luo, A.C.J., Eds.; Springer: New York, NY, USA, 2012; pp. 145–155. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 1–13. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Hristov, J. Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. Front. Fract. Calc. 2018, 1, 270–342. [Google Scholar]
- Hristov, J. Space-fractional diffusion with a potential power-law coefficient: Transient approximate solution. Prog. Fract. Differ. Appl. 2017, 3, 19–39. [Google Scholar] [CrossRef]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Yavuz, M.; Özdemir, N. A different approach to the European option pricing model with new fractional operator. Math. Model. Nat. Phenom. 2018, 13, 12. [Google Scholar] [CrossRef]
- Hristov, J. Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo–Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 2017, 21, 827–839. [Google Scholar] [CrossRef]
- Atangana, A.; Alkahtani, B.S.T. New Model of Groundwater Flowing within a Confine Aquifer: Application of Caputo–Fabrizio Derivative. Arab. J. Geosci. 2016, 9, 8. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; López-López, M.G.; Alvarado-Martínez, V.M. Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 2016, 30, 1937–1952. [Google Scholar] [CrossRef]
- Alqahtani, R.T. Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer. J. Nonlinear Sci. Appl. 2016, 9, 3647–3654. [Google Scholar] [CrossRef] [Green Version]
- Al-Salti, F.A.-M.N.; Karimov, E. Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative. arXiv 2017, arXiv:1706.00740. [Google Scholar]
- Yavuz, M.; Ozdemir, N.; Baskonus, H.M. Solutions of partial differential equations using fractional operator involving Mittag-Leffler kernel. Eur. Phys. J. Plus 2018, 133, 215. [Google Scholar] [CrossRef]
- Sheikh, N.A.; Ali, F.; Saqib, M.; Khan, I.; Jan, S.A.A.; Alshomrani, A.S.; Alghamdi, M.S. Comparison and analysis of the Atangana-Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 2017, 7, 789–800. [Google Scholar] [CrossRef]
- Hristov, J. On the Atangana-Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation. In Fractional Derivatives with Mittag-Leffler Kernel; Springer: Cham, Switzerland, 2019; pp. 175–193. [Google Scholar]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 305. [Google Scholar] [CrossRef]
- Dos Santos, M. Non-Gaussian Distributions to Random Walk in the Context of Memory Kernels. Fractal Fract. 2018, 2, 20. [Google Scholar] [CrossRef]
- Dos Santos, M. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef]
- Yavuz, M.; Özdemir, N. European vanilla option pricing model of fractional order without singular kernel. Fractal Fract. 2018, 2, 3. [Google Scholar] [CrossRef]
- Argub, O.A.; Al-Smadi, M. Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 2018, 117, 161–167. [Google Scholar]
- Argub, O.A.; Maayah, B. Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 2018, 117, 117–124. [Google Scholar] [CrossRef]
- Argub, O.A. Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Part. Differ. Equ. 2018, 34, 1759–1780. [Google Scholar]
- Yavuz, M. Characterizations of two different fractional operators without singular kernel. Math. Model. Nat. Phenom. 2019, 14, 302. [Google Scholar] [CrossRef]
- Argub, O.A. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 828–856. [Google Scholar]
- Argub, O.A. Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 2017, 73, 1243–1261. [Google Scholar]
- Dieudonne, J. Deux examples singuliers equations differentielles. Acta. Sci. Math. (Szeged) 1950, 12, 38–40. [Google Scholar]
- Godunov, A.N. Peano’s theorem in Banach spaces. Funct. Anal. Appl. 1975, 9, 53–55. [Google Scholar] [CrossRef]
- Balachandran, K.; Trujillo, J.J. The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 4587–4593. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Devi, J.V. Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 2008, 1, 38–45. [Google Scholar]
- Benchohra, M.; Seba, D. Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2009, 8, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Z.; Zhou, Y. Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 2012, 154, 292–302. [Google Scholar] [CrossRef]
- Lv, Z.W.; Liang, J.; Xiao, T.J. Solutions to fractional differential equations with nonlocal initial condition in Banach spaces. Adv. Differ. Equ. 2010, 2010, 340349. [Google Scholar] [CrossRef]
- Baleanu, D.; Agheli, B.; al Qurashi, M.M. Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Adv. Mech. Eng. 2016, 8, 1–8. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal Fract. 2019, 3, 27. https://doi.org/10.3390/fractalfract3020027
Keten A, Yavuz M, Baleanu D. Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal and Fractional. 2019; 3(2):27. https://doi.org/10.3390/fractalfract3020027
Chicago/Turabian StyleKeten, Ayşegül, Mehmet Yavuz, and Dumitru Baleanu. 2019. "Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces" Fractal and Fractional 3, no. 2: 27. https://doi.org/10.3390/fractalfract3020027
APA StyleKeten, A., Yavuz, M., & Baleanu, D. (2019). Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal and Fractional, 3(2), 27. https://doi.org/10.3390/fractalfract3020027