Analogues to Lie Method and Noether’s Theorem in Fractal Calculus
Abstract
:1. Introduction
2. Basic Tools
- The -Limits: Suppose and . Then l is called to be the limit of h through the points of as .
- The -Continuity: A function is called to be -continues at if
- The -Integration: For a bounded function h on , one can define [20,21,23]:
3. The Lie Method on -Calculus
- (1)
- onto and one-to-one;
- (2)
- ; (Composition Property).
- (3)
- ;
- (4)
- .
- Orbit of a point in the fractal differential equations: If H is a point on the solution of the fractal differential equation, then given a fractal symmetry map by choosing different values of , we get an orbit of the point H. We demonstrate this by giving the following example.
- Analogues to tangent vectors on fractal orbit: Analogues to the tangent vectors/fractal tangent vectors for any given orbit at the point are defined as follows:
- Linearized symmetry condition for the fractal differential equations: Solving the fractal symmetry condition in Equation (12) is often very difficult or impossible. Therefore, we linearize Equation (12) by using Taylor series expansion, namely,
- Infinitesimal fractal generator: In view of the fractal symmetry group of Equation (6), the infinitesimal fractal generator is defined by
4. Noether’s Theorem for Lagrangians with Fractal Set Support
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley and Sons: New York, NY, USA, 2004. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Falconer, K. Techniques in Fractal Geometry; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Edgar, G. Measure Topology and Fractal Geometry; Springer Science Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kigami, J. Analysis on Fractals; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Cattani, C. Fractals and hidden symmetries in DNA. Math. Probl. Eng. 2010, 2010, 507056. [Google Scholar] [CrossRef]
- Cattani, C. Fractional Calculus and Shannon Wavelet. Math. Probl. Eng. 2012, 2012, 502812. [Google Scholar] [CrossRef]
- Cattani, C.; Pierro, G. On the fractal geometry of DNA by the binary image analysis. Bull. Math. Biol. 2013, 75, 1544–1570. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.H.; Hooshmandasl, M.R.; Ghaini, F.M.; Cattani, C. Wavelets method for solving fractional optimal control problems. Appl. Math. Comput. 2016, 286, 139–154. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Springer Science Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bunde, A.; Havlin, S. Fractals in Science; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Laidlaw, D.; MacKay, G.; Jan, N. Some fractal properties of the percolating backbone in two dimensions. J. Stat. Phys. 1987, 46, 507–515. [Google Scholar] [CrossRef]
- Tong, P.Y.; Yu, K.W. Multifractal scaling in a Sierpinski gasket. Comput. Phys. 1992, 6, 478–482. [Google Scholar] [CrossRef]
- Tatom, F.B. The relationship between fractional calculus and fractals. Fractals 1995, 3, 217–229. [Google Scholar] [CrossRef]
- Barlow, M.T.; Edwin, A.P. Brownian motion on the Sierpinski gasket. Probab. Theor. Relat. Field 1988, 79, 543–623. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 2018, 172, 1617–1640. [Google Scholar] [CrossRef]
- Stillinger, F.H. Axiomatic basis for spaces with noninteger dimension. J. Math. Phys. 1977, 18, 1224–1234. [Google Scholar] [CrossRef]
- Kessebohmer, M.; Samuel, T.; Weyer, H. A note on measure-geometric Laplacians. Monatshefte für Mathematik 2016, 181, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Parvate, A.; Gangal, A.D. Calculus on fractal subsets of real-line I: Formulation. Fractals 2009, 17, 53–148. [Google Scholar] [CrossRef]
- Parvate, A.; Gangal, A.D. Calculus on fractal subsets of real line II: Conjugacy with ordinary calculus. Fractals 2011, 19, 271–290. [Google Scholar] [CrossRef]
- Parvate, A.; Satin, S.; Gangal, A.D. Calculus on fractal curves in Rn. Fractals 2011, 19, 15–27. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Fernandez, A.; Golmankhaneh, A.K.; Baleanu, D. Diffusion on middle-ξ Cantor sets. Entropy 2018, 20, 504. [Google Scholar] [CrossRef]
- Golmankhaneh, A.; Fernandez, A. Fractal Calculus of Functions on Cantor Tartan Spaces. Fractal Fract. 2018, 2, 30. [Google Scholar] [CrossRef]
- El-Wakil, S.A.; Zahran, M.A. Fractional Fokker–Planck equation. Chaos Solitons Fractals 2000, 11, 791–798. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. Boundary value problems for fractional diffusion equations. Phys. A Stat. Mech. Appl. 2000, 278, 107–125. [Google Scholar] [CrossRef]
- Hilfer, R.; Anton, L. Fractional master equations and fractal time random walks. Phys. Rev. E 1995, 51, R848. [Google Scholar] [CrossRef]
- Compte, A. Stochastic foundations of fractional dynamics. Phys. Rev. E 1996, 53, 4191. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 193–229. [Google Scholar] [CrossRef]
- Dos Santos, M.A. Non-Gaussian distributions to random walk in the context of memory kernels. Fractal Fract. 2018, 2, 20. [Google Scholar] [CrossRef]
- Dos Santos, M.A. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef]
- Nigmatullin, R.R.; Baleanu, D. New relationships connecting a class of fractal objects and fractional integrals in space. Fract. Calc. Appl. Anal. 2013, 16, 1–23. [Google Scholar] [CrossRef]
- Wu, G.-C.; Wu, K.-T. Variational approach for fractional diffusion-wave equations on Cantor sets. Chin. Phys. Lett. 2012, 29, 060505. [Google Scholar] [CrossRef]
- Butera, S.; Di Paola, M. A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 2014, 350, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Sun, H.; Zhang, X.; Korošak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59, 1754–1758. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Mughal, M.J.; Naqvi, Q.A. Electromagnetic Fields and Waves in Fractional Dimensional Space; Springer: New York, NY, USA, 2012. [Google Scholar]
- Engheta, N. On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 1996, 44, 554–566. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Balankin, A.S. A continuum framework for mechanics of fractal materials I: From fractional space to continuum with fractal metric. Eur. Phys. J. B 2015, 88, 90. [Google Scholar] [CrossRef]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Local fractional Fokker–Planck equation. Phys. Rev. Lett. 1998, 80, 214. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S. Random walks and diffusions on fractals. In Percolation Theory and Ergodic Theory of Infinite Particle Systems; Springer: New York, NY, USA, 1987; pp. 121–129. [Google Scholar]
- Lindstrøm, T. Brownian Motion on Nested Fractals; American Mathematical Society: Providence, RI, USA, 1990. [Google Scholar]
- Dunne, G.V. Heat kernels and zeta functions on fractals. J. Phys. A Math. Theor. 2012, 45, 374016. [Google Scholar] [CrossRef] [Green Version]
- Freiberg, U.; Zahle, M. Harmonic calculus on fractals—A measure geometric approach I. Potential Anal. 2002, 16, 265–277. [Google Scholar] [CrossRef]
- Freiberg, U. Analytic properties of measure geometric Krein–Feller operators on the real line. Math. Nachr. 2003, 260, 34–47. [Google Scholar] [CrossRef]
- Freiberg, U. Dirichlet forms on fractal subsets of the real line. Real Anal. Exch. 2004, 30, 589–604. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K. About Kepler’s Third Law on fractal-time spaces. Ain Shams Eng. J. 2018, 9, 2499–2502. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Tunc, C. On the Lipschitz condition in the fractal calculus. Chaos Solitons Fractals 2017, 95, 140–147. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Tunc, C. Sumudu Transform in Fractal Calculus. Appl. Math. Comput. 2019, 350, 386–401. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Balankin, A.S. Sub- and super-diffusion on Cantor sets: Beyond the paradox. Phys. Lett. A 2018, 382, 960–967. [Google Scholar] [CrossRef]
- Balankin, A.S.; Golmankhaneh, A.K.; Patino-Ortiz, J.; Patiño-Ortiz, M. Noteworthy fractal features and transport properties of Cantor tartans. Phys. Lett. A 2018, 382, 1534–1539. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K. On the Fractal Langevin Equation. Fractal Fract. 2019, 3, 11. [Google Scholar] [CrossRef]
- Jafari, F.K.; Asgari, M.S.; Pishkoo, A. The Fractal Calculus for Fractal Materials. Fractal Fract. 2019, 3, 8. [Google Scholar] [CrossRef]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ibragimov, N.K. Elementary Lie Group Analysis and Ordinary Differential Equations; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Starrett, J. Solving differential equations by symmetry groups. Am. Math. Mon. 2007, 114, 778–792. [Google Scholar] [CrossRef]
- Dwight, E. Neuenschwander: Emmy Noether’s Wonderful Theorem; Johns Hopkins University Press: Baltimore, MD, USA, 2011. [Google Scholar]
- Noether, E. Invariant Variation Problems. Transp. Theory Stat. Phys. 1971, 1, 183–207. [Google Scholar] [CrossRef]
- Bourdin, L.; Cresson, J.; Greff, I. A continuous/discrete fractional Noether’s theorem. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 878–887. [Google Scholar] [CrossRef] [Green Version]
- Frederico, G.S.; Torres, D.F. A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 2007, 334, 834–846. [Google Scholar] [CrossRef]
- Frederico, G.S.; Torres, D.F. Fractional Noether’s theorem in the Riesz–Caputo sense. Appl. Math. Comput. 2010, 217, 1023–1033. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B. A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl. Math. Lett. 2012, 25, 1941–1946. [Google Scholar] [CrossRef] [Green Version]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Fractional differential equations: Change of variables and nonlocal symmetries. Ufimskii Matematicheskii Zhurnal 2012, 4, 54–68. [Google Scholar]
- Kanovei, V.; Reeken, M. Nonstandard Analysis, Axiomatically; Springer Science Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili Golmankhaneh, A.; Tunç, C. Analogues to Lie Method and Noether’s Theorem in Fractal Calculus. Fractal Fract. 2019, 3, 25. https://doi.org/10.3390/fractalfract3020025
Khalili Golmankhaneh A, Tunç C. Analogues to Lie Method and Noether’s Theorem in Fractal Calculus. Fractal and Fractional. 2019; 3(2):25. https://doi.org/10.3390/fractalfract3020025
Chicago/Turabian StyleKhalili Golmankhaneh, Alireza, and Cemil Tunç. 2019. "Analogues to Lie Method and Noether’s Theorem in Fractal Calculus" Fractal and Fractional 3, no. 2: 25. https://doi.org/10.3390/fractalfract3020025
APA StyleKhalili Golmankhaneh, A., & Tunç, C. (2019). Analogues to Lie Method and Noether’s Theorem in Fractal Calculus. Fractal and Fractional, 3(2), 25. https://doi.org/10.3390/fractalfract3020025