Impulsive Fractional-Like Differential Equations: Practical Stability and Boundedness with Respect to h-Manifolds
Abstract
:1. Introduction
2. Preliminaries
- V is defined on G, V has nonnegative values and for ;
- V is continuous in G, —differentiable in t and locally Lipschitz continuous with respect to its second argument on each of the sets ;
- For each and , there exist the finite limits
3. Main Results
3.1. Practical Stability Criteria
3.2. Boundedness Results
4. Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier Science B.V: Amsterdam, The Netherlands, 2006; ISBN 0444518320. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Cattani, C.; Srivastava, H.M.; Yang, X.-J. (Eds.) Fractional Dynamics, 1st ed.; De Gryuter: Berlin, Germany, 2015; ISBN 978-3-11-047209-7. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, 1st ed.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-84831-0, 978-3-319-52141-1. [Google Scholar]
- Al-Ghafri, K.S.; Rezazadeh, H. Solitons and other solutions of (3 + 1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation. Appl. Math. Nonlinear Sci. 2019, 4, 289–304. [Google Scholar] [CrossRef]
- Atangana, A.; Gómez–Aguilar, J.F. Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu. Numer. Methods Partial. Differ. Equ. 2018, 34, 1502–1523. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 2nd ed.; World Scientific: Singapore, 2016; ISBN 9813140038. [Google Scholar]
- Bayın, S.S. Definition of the Riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys. 2016, 57, 123501. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Ghanbari, B.; Baskonus, H.M. New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2019, 128, 34–43. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Saad, K.M.; Khan, M.A.; Agarwal, P. Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach. Physica A 2019, 523, 48–65. [Google Scholar] [CrossRef]
- Saqib, M.; Khan, I.; Shafie, S. Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT’s nanofluid through a porous medium. Chaos Solitons Fractals 2018, 116, 79–85. [Google Scholar] [CrossRef]
- Taneco–Heránndez, M.A.; Morales–Delgado, V.F.; Gómez-Aguilar, J.F. Fractional Kuramoto–Sivashinsky equation with power law and stretched Mittag-Leffler kernel. Physica A 2019, 527, 121085. [Google Scholar] [CrossRef]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Tenreiro Machado, J.A. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Ortigueira, M.; Machado, J. Which Derivative? Fractal Fract. 2017, 1, 3. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Anderson, D.R.; Ulness, D.J. Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 2015, 56, 063502. [Google Scholar] [CrossRef] [Green Version]
- Eslami, M.; Rezazadeh, H. The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 2016, 53, 475–485. [Google Scholar] [CrossRef]
- Katugampola, U. A new fractional derivative with classical properties. arXiv 2014, arXiv:1410.6535. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Pospíšil, M.; Pospíšilova Škripkova, L. Sturm’s theorems for conformable fractional differential equation. Math. Commun. 2016, 21, 273–281. [Google Scholar]
- Souahi, A.; Ben Makhlouf, A.; Hammami, M.A. Stability analysis of conformable fractional-order nonlinear systems. Indag. Math. 2017, 28, 1265–1274. [Google Scholar] [CrossRef]
- Yel, G.; Baskonus, H.M. Solitons in conformable time-fractional Wu–Zhang system arising in coastal design. Pramana J. Phys. 2019, 93, 57. [Google Scholar] [CrossRef]
- Martynyuk, A.A.; Stamova, I.M. Fractional-like derivative of Lyapunov-type functions and applications to the stability analysis of motion. Electron. J. Differ. Equ. 2018, 2018, 1–12. [Google Scholar]
- Kiskinov, H.; Petkova, M.; Zahariev, A. Remarks about the existence of conformable derivatives and some consequences. arXiv 2019, arXiv:1907.03486. [Google Scholar]
- Martynyuk, A.A. On the stability of the solutions of fractional-like equations of perturbed motion. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2018, 6, 9–16. (In Russian) [Google Scholar] [CrossRef]
- Martynyuk, A.A.; Stamov, G.; Stamova, I. Integral estimates of the solutions of fractional-like equations of perturbed motion. Nonlinear Anal. Model. Control 2019, 24, 138–149. [Google Scholar] [CrossRef]
- Martynyuk, A.A.; Stamov, G.; Stamova, I. Practical stability analysis with respect to manifolds and boundedness of differential equations with fractional-like derivatives. Rocky Mt. J. Math. 2019, 49, 211–233. [Google Scholar] [CrossRef]
- Ballinger, G.; Liu, X. Practical stability of impulsive delay differential equations and applications to control problems. In Optimization Methods and Applications. Applied Optimization; Yang, X., Teo, K.L., Caccetta, L., Eds.; Kluwer: Dordrecht, The Netherlands, 2001; Volume 52, pp. 3–21. [Google Scholar]
- Bernfeld, S.R.; Lakshmikantham, V. Practical stability and Lyapunov functions. Thoku Math. J. 1980, 32, 607–613. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S.; Martynyuk, A.A. Practical Stability of Nonlinear Systems; World Scientific: Teaneck, NJ, USA, 1990; ISBN 981-02-0351-9. [Google Scholar]
- Martynyuk, A.A. (Ed.) Advances in Stability Theory at the End of the 20th Century. Stability and Control: Theory, Methods and Applications, 1st ed.; Taylor and Francis: New York, NY, USA, 2002; ISBN 0-203-16657-4. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-28060-8. [Google Scholar]
- Yang, C.; Zhang, Q.; Zhou, L. Practical stabilization and controllability of descriptor systems. Int. J. Inf. Syst. Sci. 2005, 1, 455–465. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Wang, J.; Feckan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Agarwal, P.; Tariboon, J. Noninstantaneous impulsive inequalities via conformable fractional calculus. J. Inequal. Appl. 2018, 2018, 261. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Oscillation of impulsive conformable fractional differential equations. Open Math. 2016, 14, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Cicek, M.; Yaker, C.; Gücen, M.B. Practical stability in terms of two measures for fractional order systems in Caputo’s sense with initial time difference. J. Frankl. Inst. 2014, 351, 732–742. [Google Scholar] [CrossRef]
- Stamova, I.M.; Henderson, J. Practical stability analysis of fractional-order impulsive control systems. ISA Trans. 2016, 64, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Bernfeld, S.R.; Corduneanu, C.; Ignatyev, A.O. On the stability of invariant sets of functional differential equations. Nonlinear Anal. 2003, 55, 641–656. [Google Scholar] [CrossRef]
- Bohner, M.; Stamova, I.; Stamov, G. Impulsive control functional differential systems of fractional order: Stability with respect to manifolds. Eur. Phys. J. Spec. Top. 2017, 226, 3591–3607. [Google Scholar] [CrossRef]
- Smale, S. Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Norm. Sup. Pisa 1963, 3, 97–116. [Google Scholar]
- Stamov, G. Lyapunov’s functions and existence of integral manifolds for impulsive differential systems with time-varying delay. Methods Appl. Anal. 2009, 16, 291–298. [Google Scholar]
- Liu, B.; Liu, X.; Liao, X. Robust stability of uncertain impulsive dynamical systems. J. Math. Anal. Appl. 2004, 290, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.T.; Alzabut, J.O. Almost periodic solutions in the PC-space for uncertain impulsive dynamical systems. Nonlinear Anal. 2011, 74, 4653–4659. [Google Scholar] [CrossRef]
- Stamov, G.T.; Simeonov, S.; Stamova, I.M. Uncertain impulsive Lotka–Volterra competitive systems: Robust stability of almost periodic solutions. Chaos Solitons Fractals 2018, 110, 178–184. [Google Scholar] [CrossRef]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A. Boundedness of the solutions for certain classes of fractional differential equations with application to adaptive systems. ISA Trans. 2016, 60, 82–88. [Google Scholar] [CrossRef]
- Ahmad, S.; Stamova, I.M. (Eds.) Lotka–Volterra and Related Systems: Recent Developments in Population Dynamics, 1st ed.; Walter de Gruyter: Berlin, Germany, 2013; ISBN 978-3-11-026984-0. [Google Scholar]
- Gopalsamy, K. Stability and Oscillation in Delay Differential Equations of Population Dynamics, 1st ed.; Springer: Dordrecht, The Netherlands, 1992; ISBN 978-0-7923-1594-0. [Google Scholar]
- Takeuchi, Y. Global Dynamical Properties of Lotka–Volterra Systems; World Scientific: Singapore, 1996; ISBN 978-981-02-2471-4, 978-981-4499-63-7. [Google Scholar]
- Li, M.; Duan, Y.; Zhang, W.; Wang, M. The existence of positive periodic solutions of a class of Lotka–Volterra type impulsive systems with infinitely distributed delay. Comput. Math. Appl. 2005, 49, 1037–1044. [Google Scholar] [CrossRef]
- Liu, X.; Rohlf, K. Impulsive control of a Lotka–Volterra system. IMA J. Math. Control Inform. 1998, 15, 269–284. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Tang, R. Permanence and extinction of an impulsive delay competitive Lotka–Volterra model with periodic coefficients. IMA J. Appl. Math. 2009, 74, 559–573. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Srivastava, M.; Das, S. Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems. Nonlinear Dyn. 2012, 69, 2277–2288. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.M. On almost periodic processes in impulsive fractional-order competitive systems. J. Math. Chem. 2018, 56, 583–596. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamov, G.; Martynyuk, A.; Stamova, I. Impulsive Fractional-Like Differential Equations: Practical Stability and Boundedness with Respect to h-Manifolds. Fractal Fract. 2019, 3, 50. https://doi.org/10.3390/fractalfract3040050
Stamov G, Martynyuk A, Stamova I. Impulsive Fractional-Like Differential Equations: Practical Stability and Boundedness with Respect to h-Manifolds. Fractal and Fractional. 2019; 3(4):50. https://doi.org/10.3390/fractalfract3040050
Chicago/Turabian StyleStamov, Gani, Anatoliy Martynyuk, and Ivanka Stamova. 2019. "Impulsive Fractional-Like Differential Equations: Practical Stability and Boundedness with Respect to h-Manifolds" Fractal and Fractional 3, no. 4: 50. https://doi.org/10.3390/fractalfract3040050
APA StyleStamov, G., Martynyuk, A., & Stamova, I. (2019). Impulsive Fractional-Like Differential Equations: Practical Stability and Boundedness with Respect to h-Manifolds. Fractal and Fractional, 3(4), 50. https://doi.org/10.3390/fractalfract3040050