Untargeted Liquid Chromatography–High-Resolution Mass Spectrometry Metabolomic Investigation Reveals Altered Lipid Content in Leishmania infantum Lacking Lipid Droplet Protein Kinase
Abstract
1. Introduction
2. Materials and Methods
2.1. Parasite Culture Conditions
2.2. Sample Collection
2.3. Extraction of Intracellular Metabolites
2.4. LC-HRMS Equipment
2.5. Data Processing and Statistical Analysis
2.6. Metabolite Annotation, Enrichment, and Network Analyses
3. Results
3.1. Changes in the Metabolic Profiles of L. infantum LDK between the Logarithmic and Stationary Phases of Growth
3.2. LDK Deletion Altered the Lipid Profile of L. infantum
3.3. Metabolism of Glycerophospholipids Was the Main Pathway Impacted by LDK Deletion in L. infantum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 13 June 2024).
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M.D.; WHO Leishmaniasis Control Team. Leishmaniasis Worldwide and Global Estimates Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Guerin, P.J.; Olliaro, P.; Sundar, S.; Boelaert, M.; Croft, S.L.; Desjeux, P.; Wasunna, M.K.; Bryceson, A.D. Visceral leishmaniasis: Current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect. Dis. 2002, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Guido, R.V.C.; Andricopulo, A.D.; Oliva, G. Drug design, biotechnology and medicinal chemistry: Applications to infectious diseases. Estud. Avançados 2010, 24, 81–98. [Google Scholar] [CrossRef]
- Mohan, S.; Revill, P.; Malvolti, S.; Malhame, M.; Sculpher, M.; Kaye, P.M. Estimating the global demand curve for a leishmaniasis vaccine: A generalisable approach based on global burden of disease estimates. PLoS Negl. Trop. Dis. 2022, 16, e0010471. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.W. Treatment of visceral leishmaniasis in 2010: Direction from Bihar State, India. Future Microbiol. 2010, 5, 1301–1303. [Google Scholar] [CrossRef] [PubMed]
- Flaspohler, J.A.; Jensen, B.C.; Saveria, T.; Kifer, C.T.; Parsons, M. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot. Cell 2010, 9, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.M.; Silva, P.A.; Costa-Silva, H.M.; Santi, A.M.M.; Murta, S.M.F. Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Negl. Trop. Dis. 2024, 18, e0011880. [Google Scholar] [CrossRef] [PubMed]
- Bozza, P.; D’Avila, H.; Almeida, P.; Magalhães, K.; Almeida, C.; Maya-Monteiro, C. Lipid droplets in host–pathogen interactions. Clin. Lipidol. 2009, 4, 791–807. [Google Scholar] [CrossRef]
- Vallochi, A.L.; Teixeira, L.; Oliveira, K.D.S.; Maya-Monteiro, C.M.; Bozza, P.T. Lipid droplet, a key player in host-parasite interactions. Front. Immunol. 2018, 9, 1022. [Google Scholar] [CrossRef]
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Westrop, G.D.; Williams, R.A.; Wang, L.; Zhang, T.; Watson, D.G.; Silva, A.M.; Coombs, G.H. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS ONE 2015, 10, e0136891. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Chen, J.; Zhao, Z.; Qin, H. Metabolomics analysis of visceral leishmaniasis based on urine of golden hamsters. Parasit. Vectors 2023, 16, 304. [Google Scholar] [CrossRef] [PubMed]
- Canuto, G.A.B.; Dörr, F.; Lago, J.H.G.; Tempone, A.G.; Pinto, E.; Pimenta, D.C.; Farah, J.P.S.; Alves, M.J.M.; Tavares, M.F.M. New insights into the mechanistic action of methyldehydrodieugenol B towards Leishmania (L.) infantum via a multiplatform based untargeted metabolomics approach. Metabolomics 2017, 13, 56. [Google Scholar] [CrossRef]
- Weingärtner, A.; Kemmer, G.; Müller, F.D.; Zampieri, R.A.; Santos, M.; Schiller, J.; Pomorski, T.G. Leishmania promastigotes lack phosphatidylserine but bind annexin V upon permeabilization or miltefosine treatment. PLoS ONE 2012, 7, e42070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Beverley, S.M. Phospholipid and sphingolipid metabolism in Leishmania. Mol. Biochem. Parasitol. 2010, 170, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Pawlowic, M.C.; Hsu, F.F.; Thomas, G.; Zhang, K. Ethanolaminephosphate cytidylyltransferase is essential for survival, lipid homeostasis and stress tolerance in Leishmania major. PLoS Pathog. 2023, 19, e1011112. [Google Scholar] [CrossRef] [PubMed]
- Moitra, S.; Basu, S.; Pawlowic, M.; Hsu, F.F.; Zhang, K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania major. Front. Cell. Infect. Microbiol. 2021, 11, 647870. [Google Scholar] [CrossRef] [PubMed]
- Cabral, F.V.; Cerone, M.; Persheyev, S.; Lian, C.; Samuel, I.D.W.; Ribeiro, M.S.; Smith, T.K. New insights in photodynamic inactivation of Leishmania amazonensis: A focus on lipidomics and resistance. PLoS ONE 2023, 18, e0289492. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, W.; Chen, C.; Yan, B.; Zhu, L.; Chen, X.; Peng, C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020, 247, 117443. [Google Scholar] [CrossRef]
- Dumetz, F.; Cuypers, B.; Imamura, H.; Zander, D.; D’Haenens, E.; Maes, I.; Domagalska, M.A.; Clos, J.; Dujardin, J.C.; Muylder, G. Molecular Preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent. mSphere 2018, 3, e00548-17. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Bhattacharyya, S.; Sirkar, M.; Sa, G.S.; Das, T.; Majumdar, D.; Roy, S.; Majumdar, S. Leishmania donovani suppresses activated protein 1 and NF-kappaB activation in host macrophages via ceramide generation: Involvement of extracellular signal-regulated kinase. Infect. Immun. 2002, 70, 6828–6838. [Google Scholar] [CrossRef] [PubMed]
- Haram, C.S.; Moitra, S.; Keane, R.; Kuhlmann, F.M.; Frankfater, C.; Hsu, F.F.; Beverley, S.M.; Zhang, K.; Keyel, P.A. The sphingolipids ceramide and inositol phosphorylceramide protect the Leishmania major membrane from sterol-specific toxins. J. Biol. Chem. 2023, 299, 104745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pompey, J.M.; Hsu, F.F.; Key, P.; Bandhuvula, P.; Saba, J.D.; Turk, J.; Beverley, S.M. Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J. 2007, 26, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Okundaye, B.; Biyani, N.; Moitra, S.; Zhang, K. The Golgi-localized sphingosine-1-phosphate phosphatase is indispensable for Leishmania major. Sci. Rep. 2022, 12, 16064. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Jin, Y.; Yang, S.; Joachim, A.M.; Ning, Y.; Mori-Quiroz, L.M.; Fromm, J.; Perera, C.; Zhang, K.; Werbovetz, K.A.; et al. Sterol profiling of Leishmania parasites using a new HPLC-tandem mass spectrometry-based method and antifungal azoles as chemical probes reveals a key intermediate sterol that supports a branched ergosterol biosynthetic pathway. Int. J. Parasitol. Drugs Drug Resist. 2022, 20, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Gilk, S.D.; Beare, P.A.; Heinzen, R.A. Coxiella burnetii expresses a functional Δ24 sterol reductase. J. Bacteriol. 2010, 192, 6154–6159. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Wilson, M.E. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form. Parasit. Vectors 2016, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Mathur, R.; Das, R.P.; Ranjan, A.; Shaha, C. Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J. 2015, 29, 4201–4213. [Google Scholar] [CrossRef]
- Aquino, G.P.; Gomes, M.A.; Salinas, R.; Laranjeira-Silva, M.F. Lipid and fatty acid metabolism in trypanosomatids. Microb. Cell 2021, 8, 262–275. [Google Scholar] [CrossRef]
- Zufferey, R.; Allen, S.; Barron, T.; Sullivan, D.R.; Denny, P.W.; Almeida, I.C.; Smith, D.F.; Turco, S.J.; Ferguson, M.A.; Beverley, S.M. Ether phospholipids and glycosylinositolphospholipids are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. J. Biol. Chem. 2003, 278, 44708–44718. [Google Scholar] [CrossRef] [PubMed]
- Deevska, G.M.; Nikolova-Karakashian, M.N. The expanding role of sphingolipids in lipid droplet biogenesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
Metabolites | Log Phase (Fold Change) | Stationary Phase (Fold Change) |
---|---|---|
Sterols | ||
Ergosta-5,7,22,24(28)-tetraen-3beta-ol | ↓ (0.84) | |
Fatty Acids and Conjugates | ||
Octadecatetraenoic acid | ↓ (0.63) | |
Methyl 5S,6R-epoxy-7-eicosynoate | ↓ (0.72) | |
Sphingolipids and Ceramide | ||
Spisulosine | ↑ (1.20) | |
Ceramide—Cer(34:1;O2) | ↑ (1.03) | |
Glycerophosphocholine and derivatives | ||
Lysophosphatidylcholine—LPC (15:0) | ↓ (0.65) | |
Lysophosphatidylcholine—LPC (15:1) | ↓ (0.57) | ↑ (1.54) |
Lysophosphatidylcholine—LPC (16:1) | ↓ (0.68) | |
Lysophosphatidylcholine—LPC (18:0) | ↓ (0.67/0.42 *) | ↑ (3.06/4.26 *) |
Lysophosphatidylcholine—LPC (18:1) | ↓ (0.42) | ↑ (1.24/2.28 *) |
Lysophosphatidylcholine—LPC (18:2) | ↑ (1.79) | |
Lysophosphatidylcholine—LPC (18:3) | ↓ (0.43) | ↑ (3.64) |
Lysophosphatidylcholine—LPC (18:4) | ↓ (0.63) | |
Lysophosphatidylcholine—LPC (20:3) | ↑ (2.09) | |
Lysophosphatidylcholine—LPC (20:4) | ↓ (0.42) | |
Lysophosphatidylcholine—LPC (22:6) | ↑ (2.09) | |
Phosphatidylcholine—PC (32:2) | ↓ (0.78) | |
Phosphatidylcholine—PC (32:3) | ↓ (0.66) | |
Phosphatidylcholine—PC (33:5) | ↓ (0.51/0.55 *) | |
Phosphatidylcholine—PC (34:2) | ↓ (0.70) | |
Phosphatidylcholine—PC (34:3) | ↓ (0.84) | ↑ (1.16) |
Phosphatidylcholine—PC (34:4) | ↓ (0.67) | ↑ (1.88) |
Phosphatidylcholine—PC (34:6) | ↓ (0.84/0.55 *) | |
Phosphatidylcholine—PC (36:7) | ↓ (0.73) | ↑ (1.20) |
Phosphatidylcholine—PC (38:4) | ↑ (1.04) | |
Phosphatidylcholine—PC (38:6) | ↑ (1.63) | |
Phosphatidylcholine—PC (38:7) | ↑ (1.05) | |
Phosphatidylcholine—PC (38:9) | ↑ (1.21) | ↑ (1.04) |
Phosphatidylcholine—PC (40:5) | ↑ (1.05) | |
Phosphatidylcholine—PC (40:8) | ↓ (0.79/0.83 *) | |
Phosphatidylcholine—PC (40:9) | ↑ (1.14) | ↑ (1.63) |
Phosphatidylcholine—PC (42:9) | ↑ (1.19) | |
Phosphatidylcholine—PC (42:10) | ↑ (1.40) | |
Phosphatidylcholine—PC (44:11) | ↑ (2.70) | |
Glycerophosphoethanolamine and derivatives | ||
Lysophosphatidylethanolamine—LPE (18:1) | ↓ (0.57) | |
Lysophosphatidylethanolamine—LPE (18:2) | ↓ (0.85) | ↓ (0.84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.M.; Canuto, G.A.B.; Caldeira, A.S.P.; de Siqueira, E.P.; Zani, C.L.; Murta, S.M.F.; de Almeida Alves, T.M. Untargeted Liquid Chromatography–High-Resolution Mass Spectrometry Metabolomic Investigation Reveals Altered Lipid Content in Leishmania infantum Lacking Lipid Droplet Protein Kinase. Trop. Med. Infect. Dis. 2024, 9, 208. https://doi.org/10.3390/tropicalmed9090208
Ribeiro JM, Canuto GAB, Caldeira ASP, de Siqueira EP, Zani CL, Murta SMF, de Almeida Alves TM. Untargeted Liquid Chromatography–High-Resolution Mass Spectrometry Metabolomic Investigation Reveals Altered Lipid Content in Leishmania infantum Lacking Lipid Droplet Protein Kinase. Tropical Medicine and Infectious Disease. 2024; 9(9):208. https://doi.org/10.3390/tropicalmed9090208
Chicago/Turabian StyleRibeiro, Juliana Martins, Gisele André Baptista Canuto, Alisson Samuel Portes Caldeira, Ezequias Pessoa de Siqueira, Carlos Leomar Zani, Silvane Maria Fonseca Murta, and Tânia Maria de Almeida Alves. 2024. "Untargeted Liquid Chromatography–High-Resolution Mass Spectrometry Metabolomic Investigation Reveals Altered Lipid Content in Leishmania infantum Lacking Lipid Droplet Protein Kinase" Tropical Medicine and Infectious Disease 9, no. 9: 208. https://doi.org/10.3390/tropicalmed9090208
APA StyleRibeiro, J. M., Canuto, G. A. B., Caldeira, A. S. P., de Siqueira, E. P., Zani, C. L., Murta, S. M. F., & de Almeida Alves, T. M. (2024). Untargeted Liquid Chromatography–High-Resolution Mass Spectrometry Metabolomic Investigation Reveals Altered Lipid Content in Leishmania infantum Lacking Lipid Droplet Protein Kinase. Tropical Medicine and Infectious Disease, 9(9), 208. https://doi.org/10.3390/tropicalmed9090208