Evaluation of Chemokines MIG and IP-10 as Immunological Biomarkers of Human Visceral Leishmaniasis: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Data Sources and Search Strategy
2.3. Study Selection and Data Extraction
2.4. Risk of Bias and Quality Assessment
3. Results
3.1. Included Studies
3.2. Description of Studies
3.3. Quality Evaluation Criteria
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oryan, A.; Akabari, M. Worldwide risk factors in Leishmaniasis. Asian Pac. J. Trop. Med. 2016, 9, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Lukes, J.; Mauricio, I.L.; Schönian, G.; Dujardin, J.C.; Soteriadou, K.; Dedet, J.P.; Kuhls, K.; Tintaya, K.W.Q.; Jirku, M.; Chocholová, E.; et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc. Natl. Acad. Sci. USA 2007, 104, 9375–9380. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef]
- Okwor, I.; Uzonna, J. Social and economic burden of human Leishmaniasis. Am. J. Trop. Med. Hyg. 2016, 94, 489. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R.W.; Alvar, J.; Boelaert, M. Visceral Leishmaniasis: What are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 2007, 5, 873–882. [Google Scholar] [CrossRef]
- Singh, O.P.; Hasker, E.; Sacks, D.; Boelaert, M.; Sundar, S. Asymptomatic Leishmania infection: A new challenge for Leishmania control. Clin. Infect. Dis. 2014, 58, 1424–1429. [Google Scholar] [CrossRef]
- Ibarra-Meneses, A.V.; Corbeil, A.; Wagner, V.; Onwuchekwa, C.; Fernandez-Prada, C. Identification of asymptomatic Leishmania infections: A scoping review. Parasites Vectors 2022, 15, 5. [Google Scholar] [CrossRef]
- Srivastava, P.; Dayama, A.; Mehrotra, S.; Sundar, S. Diagnosis of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 1–6. [Google Scholar] [CrossRef]
- Ibarra-Meneses, A.V.; Moreno, J.; Carrillo, E. New strategies and biomarkers for the control of visceral leishmaniasis. Trends Parasitol. 2019, 36, 29–38. [Google Scholar] [CrossRef]
- Monteiro, B.E.F.; da Silva, E.D.; Bezerra, G.S.N.; Cavalcante, M.K.d.A.; Pereira, V.R.A.; Castro, M.C.A.B.; Mendes, L.G.; Guedes, D.L.; Barbosa Júnior, W.L.; de Medeiros, Z.M. Evaluation of Proinflammatory Chemokines in HIV Patients with Asymptomatic Leishmania infantum Infection. Trop. Med. Infect. Dis. 2023, 8, 495. [Google Scholar] [CrossRef]
- Araújo, F.F.; Costa-Silva, M.F.; Pereira, A.A.S.; Rêgo, F.D.; Pereira, V.H.S.; Souza, J.P.d.; Fernandes, L.O.B.; Martins-Filho, O.A.; Gontijo, C.M.F.; Peruhype-Magalhães, V.; et al. Chemokines in Leishmaniasis: Map of cell movements highlights the landscape of infection and pathogenesis. Cytokine 2021, 147, 155339. [Google Scholar] [CrossRef] [PubMed]
- Oghumu, S.; Dong, R.; Varikuti, S.; Shawler, T.; Kampfrath, T.; Terrazas, C.A.; Lezama-Davila, C.; Ahmer, B.M.M.; Whitacre, C.C.; Rajagopalan, S.; et al. Distinct populations of innate CD8+ T cells revealed in a CXCR3 reporter mouse. J. Immunol. 2013, 190, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Oghumu, S.; Lezama-Dávila, C.M.; Isaac-Márquez, A.P.; Satoskar, A.R. Role of chemokines in regulation of immunity against leishmaniasis. Exp. Parasitol. 2010, 126, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Vester, B.; Muller, K.; Solbach, W.; Laskay, T. Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect. Immun. 1999, 67, 3155–3159. [Google Scholar] [CrossRef]
- Muller, K.; Van Zandbergen, G.; Hansen, B.; Laufs, H.; Jahnke, N.; Solbach, W.; Laskay, T. Chemokines, natural killer cells and granulocytes in the early course of Leishmania major infection in mice. Med. Microbiol. Immunol. 2001, 190, 73–76. [Google Scholar] [CrossRef]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef]
- Ezra, N.; Ochoa, M.T.; Craft, N. Human immunodeficiency virus and leishmaniasis. J. Glob. Infect. Dis. 2010, 2, 248–257. [Google Scholar]
- Hailu, A.; Van Der Poll, T.; Berhe, N.; Kager, P.A. Elevated plasma levels of interferon (IFN)-γ, IFN-γ inducing cytokines, and IFN-γ inducible CXC chemokines in visceral leishmaniasis. Am. J. Trop. Med. Hyg. 2004, 71, 561–567. [Google Scholar] [CrossRef]
- Aleka, Y.; Ibarra-Meneses, A.V.; Workineh, M.; Tabeje, F.; Kiflie, A.; Tessema, M.K.; Melkamu, R.; Tadesse, A. Whole blood stimulation assay as a treatment outcome monitoring tool for VL patients in Ethiopia: A pilot evaluation. J. Immunol. Res. 2020, 2020, 8385672. [Google Scholar] [CrossRef]
- Ibarra-Meneses, A.V.; Ghosh, P.; Hossain, F.; Chowdhury, R.; Mondal, D.; Alvar, J.; Moreno, J.; Carrillo, E. IFN-γ, IL-2, IP-10, and MIG as biomarkers of exposure to Leishmania spp., and of cure in human visceral leishmaniasis. Front. Cell Infect. Microbiol. 2017, 7, 200. [Google Scholar] [CrossRef]
- Botana, L.; Ibarra-Meneses, A.V.; Sánchez, C.; Castro, A.; San Martin, J.V.; Molina, L.; Ruiz-Giardin, J.M.; Carrillo, E.; Moreno, J. Asymptomatic immune responders to Leishmania among HIV positive patients. PLoS Negl. Trop. Dis. 2019, 13, e0007461. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; MacLean, J.A.; Lee, F.S.; Casciotti, L.; DeHaan, E.; Schwartzman, J.D.; Luster, A.D. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 2000, 12, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.P.; Cariste, L.M.; Moraschi, B.F.; Zanetti, B.F.; Han, S.W.; Ribeiro, D.A.; Machado, A.V.; Lannes-Vieira, J.; Gazzinelli, R.T.; Vasconcelos, J.R.C. CXCR3 chemokine receptor guides Trypanosoma cruzi-specific T-cells triggered by DNA/adenovirus ASP2 vaccine to heart tissue after challenge. PLoS Negl. Trop. Dis. 2019, 29, e0007597. [Google Scholar]
- Olive, A.J.; Gondek, D.C.; Starnbach, M.N. CXCR3 and CCR5 are both required for T cell-mediated protection against C. trachomatis infection in the murine genital mucosa. Mucosal Immunol. 2011, 4, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- International Prospective Register of Systematic Reviews. PROSPERO 2021, 2021, 1–4. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=241677 (accessed on 10 March 2021).
- Johnson, N.; Phillips, M. Rayyan for systematic reviews. J. Electron. Resour. Librariansh. 2018, 30, 46–48. [Google Scholar] [CrossRef]
- Singh, N.; Sundar, S. Inflammatory chemokines and their receptors in human visceral leishmaniasis: Gene expression profile in peripheral blood, splenic cellular sources and their impact on trafficking of inflammatory cells. Mol. Immunol. 2017, 85, 111–119. [Google Scholar] [CrossRef]
- Ibarra-Meneses, A.V.; Mondal, D.; Alvar, J.; Moreno, J.; Carrillo, E. Cytokines and chemokines measured in dried SLA-stimulated whole blood spots for asymptomatic Leishmania infantum and Leishmania donovani infection. Sci. Rep. 2017, 7, 17266. [Google Scholar] [CrossRef]
- Porcino, G.N.; Carvalho, K.S.S.; Braz, D.C.; Costa Silva, V.; Costa, C.H.N.; de Miranda, I.K.F.S. Evaluation of methods for detection of asymptomatic individuals infected with Leishmania infantum in the state of Piauí, Brazil. PLoS Negl. Trop. Dis. 2019, 13, e0007493. [Google Scholar] [CrossRef]
- Tasew, G.; Gadisa, E.; Abera, A.; Chanyalew, M.; Abebe, M.; Howe, R.; Ritter, U.; Aseffa, A.; Laskay, T. Whole blood-based in vitro culture reveals diminished secretion of pro-inflammatory cytokines and chemokines in visceral leishmaniasis. Cytokine 2021, 145, 155246. [Google Scholar] [CrossRef] [PubMed]
- Botana, L.; Ibarra-Meneses, A.V.; Sanchez, C.; Matia, B.; San Martin, J.V.; Moreno, J.; Carrillo, E. Leishmaniasis: A new method for confirming cure and detecting asymptomatic infection in patients receiving immunosuppressive treatment for autoimmune disease. PLoS Negl. Trop. Dis. 2021, 15, e0009662. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Antón, N.; Ibarra-Meneses, A.V.; Carrillo, E.; Fernández-Ruiz, M.; Hernández-Jiménez, P.; Aguado, J.M.; Moreno, J.; López-Medrano, F. An exploratory analysis of C-X-C motif chemokine ligand 10 as a new biomarker of asymptomatic Leishmania infantum infection in solid-organ transplant recipients. J. Infect. 2022, 84, 573–578. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, F.F.; Lakhal-Naouar, I.; Koles, N.; Raiciulescu, S.; Mody, R.; Aronson, N. Potential Biomarkers for Asymptomatic Visceral Leishmaniasis among Iraq-Deployed U.S. Military Personnel. Pathogens 2023, 12, 705. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, L.; Santos, L.A.; Arruda, L.B.; da Silva, M.D.P.P.; Silva, M.O.; Silva, J.A.G.; Ramos, A.; dos Santos, M.B.; Torres, F.G.; Orge, C.; et al. High seroprevalence of Leishmania infantum is linked to immune activation in people with HIV: A two-stage cross-sectional study in Bahia, Brazil. Front. Microbiol. 2023, 19, 1221682. [Google Scholar] [CrossRef]
- Kmet, L.M.; Cook, L.S.; Lee, R.C. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields. Edmonton: Alberta Heritage Foundation for Medical Research. 2004, pp. 1–22. Available online: https://www.ihe.ca/advanced-search/standard-quality-assessment-criteria-for-evaluating-primary-research-papers-from-a-variety-of-field (accessed on 4 April 2024).
- Vieira, A.V.B.; Farias, P.C.S.; Bezerra, G.S.N.; Xavier, A.T.; Júnior, M.S.d.C.L.; da Silva, E.D.D.; Barbosa Júnior, W.L.; Medeiros, Z.M. Evaluation of molecular techniques to visceral leishmaniasis detection in asymptomatic patients: A systematic review. Expert. Rev. Mol. Diagn. 2021, 21, 493–504. [Google Scholar] [CrossRef]
- World Health Organization. Kala-Azar Elimination Programme: Report of a WHO Consultation of Partners; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Molyneux, D.H. The London declaration on neglected tropical diseases: 5 years on. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 623–625. [Google Scholar] [CrossRef]
- Maksoud, S.; Ortega, J.T.; Hidalgo, M.; Rangel, H.R. Leishmania donovani and HIV co-infection in vitro: Identification and characterization of main molecular players. Acta Trop. 2022, 228, 106248. [Google Scholar] [CrossRef]
- Maksoud, S.; El Hokayem, J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023, 9, 15055. [Google Scholar] [CrossRef]
- Nandan, D.; Lo, R.; Reiner, N.E. Activation of phosphotyrosine phophatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani. Infect. Immun. 1999, 67, 4055–4063. [Google Scholar] [CrossRef]
- Antonia, A.L.; Gibbs, K.D.; Trahair, E.D.; Pittman, K.J.; Martin, A.T.; Schott, B.H.; Smith, J.S.; Rajagopal, S.; Thompson, J.W.; Reinhardt, R.L.; et al. Pathogen Evasion of Chemokine Response Through Suppression of CXCL10. Front. Cell Infect. Microbiol. 2019, 7, 280. [Google Scholar] [CrossRef] [PubMed]
- Barbi, J.; Brombacher, F.; Satoskar, A.R. T cells from Leishmania major-susceptible BALB/c mice have a defect in efficiently up-regulating CXCR3 upon activation. J. Immunol. 2008, 181, 4613–4620. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Júnior, W.L.; Justo, A.M.; dos Santos, A.M.A.; de Lorena, V.M.B.; do Carmo, R.F.; de Melo, F.L.; de Medeiros, Z.M.; Vasconcelos, L.R.S. Higher levels of TNF and IL-4 cytokines and low miR-182 expression in visceral leishmaniasis-HIV co-infected patients. Parasite Immunol. 2020, 42, e12701. [Google Scholar] [CrossRef]
- Adriaensen, W.; Dorlo, T.P.C.; Vanham, G.; Kestens, L.; Kaye, P.M.; Van Griensven, J. Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients. Front. Immunol. 2018, 12, 1943. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, E.; Carrasco-Antón, N.; López-Medrano, F.; Salto, E.; Fernández, L.; San Martín, J.V.; Alvar, J.; Aguado, J.M.; Moreno, J. Cytokine Release Assays as Tests for Exposure to Leishmania, and for Confirming Cure from Leishmaniasis, in Solid Organ Transplant Recipients. PLoS Negl. Trop. Dis. 2015, 9, e0004179. [Google Scholar] [CrossRef]
- Adem, E.; Tajebe, F.; Getahun, M.; Kiflie, A.; Diro, E.; Hailu, A.; Shkedy, Z.; Mengesha, B.; Mulaw, T.; Atnafu, S.; et al. Successful treatment of human visceral leishmaniasis restores antigen-specific IFN-γ, but not IL-10 production. PLoS Negl. Trop. Dis. 2016, 10, e0004468. [Google Scholar] [CrossRef]
- Das, S.; Matlashewski, G.; Bhunia, G.S.; Kesari, S.; Das, P. Asymptomatic Leishmania infections in northern India: A threat for the elimination programme? Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 679–684. [Google Scholar] [CrossRef]
- Gebreyohannes, E.A.; Bhagvathula, A.S.; Abegaz, T.M.; Seid, M.A. Treatment outcomes of visceral leishmaniasis in Ethiopia from 2001 to 2017: A systematic review and meta-analysis. Infect. Dis. Poverty 2018, 7, 108. [Google Scholar] [CrossRef]
- Kip, A.E.; Balasegaram, M.; Beijnen, J.H.; Schellens, J.H.; de Vries, P.J.; Dorlo, T.P. Systematic review of biomarkers to monitor therapeutic response in Leishmaniasis. Antimicrob. Agents Chemother. 2015, 59, 1–14. [Google Scholar] [CrossRef]
Characteristics | [18] | [28] | [20] | [29] | [21] | [30] | [19] | [31] | [32] | [33] | [34] | [35] | [10] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year of publication | 2004 | 2017 | 2017 | 2017 | 2019 | 2019 | 2020 | 2020 | 2021 | 2022 | 2023 | 2023 | 2023 |
Country | Ethiopia | India | Bangladesh and Spain | Bangladesh and Spain | Spain | Brazil | Ethiopia | Ethiopia | Spain | Spain | United States | Brazil | Brazil |
Endemic species | L. donovani | L. donovani | L. infantum and L. donovani | L. infantum and L. donovani | L. infantum | L. Infantum | L. donovani | L. donovani | L. infantum | L. infantum | L. infantum | L. infantum | L. infantum |
Conditions | VL | VL | VL | VL | VL-HIV | VL | VL | VL | Autoimmune disease | Solid organ transplant | VL | VL-HIV | VL-HIV |
Study population (n) | |||||||||||||
Active | 70 | 41 | 12 a | - | - | 25 | 13 | 29 | 5 | - | - | - | - |
Asymptomatic | 39 | - | 57 a, 12 b | 40 a, 12 b | 13 | 2, 15, 11 * | - | - | 20 | 14 | 35 | 14 | 53 |
After treatment | 33 | 10 | 14 a | - | - | 10 | 13 | - | 14 | - | - | - | - |
Negative control | 12 | 19 | 63 | 33 | 19 | 17 | - | 26 | 74 | 36 | 14 | 26 | 17 |
Diagnosis | Splenic and lymph node aspirate, LST and DAT | Splenic aspirate and ELISA | CPA, rK39-ICT, DAT and qPCR | CPA, rK39-ICT, DAT and qPCR | CPA, rK39-ICT, ELISA, IFAT, and Ln-PCR | Bone marrow aspirate, cell culture, rK39-ICT, ELISA and qPCR | Splenic and bone marrow aspirate | rK39-ICT and DAT | CPA, rK39-ICT, ELISA, IFAT, and Ln-PCR | CPA, rK39-ICT, ELISA, IFAT, and qPCR | ELISA, IGRA, and qPCR | ELISA | rK39-ICT, DAT, ELISA, KAtex, and cPCR |
References | Chemokine Quantification pg/mL | Sample Used | Method | Cut-Off | AUC | Sensibility (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
[18] | Active | ||||||
MIG: 11,110.2 IP-10: 857.4 | Plasma | ELISA | ND | ND | ND | ND | |
Asymptomatic | |||||||
MIG: 5649 IP-10: <308.7 | Plasma | ELISA | ND | ND | ND | ND | |
After treatment | |||||||
MIG: 7673.5 IP-10: 380 | Plasma | ELISA | ND | ND | ND | ND | |
[28] | MIG: ND IP-10: ND | Plasma | CBA | ND | ND | ND | ND |
[20] | Active | ||||||
MIG: 123.1 IP-10: 270.1 | Stimulated whole blood by L. infantum | CBA | ND | ND | ND | ND | |
Asymptomatic | |||||||
MIG: 892 MIG: 604 IP-10: 3303 IP-10: 3406 | Stimulated whole blood by L. infantum Stimulated whole blood by L. donovani Stimulated whole blood by L. infantum Stimulated whole blood by L. donovani | CBA | 312.6 138.1 1965 1678 | 0.96 1.00 0.99 0.98 | 92.73 100 98.25 91.67 | 91.84 100 98 93.31 | |
After treatment | |||||||
MIG: 1033 IP-10: 2638 | Stimulated whole blood by L. infantum | CBA | 176 1142 | 0.82 0.98 | 92.31 92.86 | 81.82 100 | |
[29] | Asymptomatic | ||||||
MIG: 3598 TLP MIG: 205.34 DPS-AT MIG: 241.56 DPS-FZ IP-10: 16,040 TLP IP-10: 1435 DPS-AT IP-10: 1416 DPS-FZ | Stimulated whole blood by L. donovani | CBA | ND | 1.00 0.96 0.96 0.99 0.99 0.99 | 100 83.33 83.33 83.33 83.33 83.33 | 100 92.31 92.31 92.31 92.31 92.21 | |
[21] | Asymptomatic | ||||||
MIG: 13,062 MIG: 583.1 IP-10: 1139 IP-10: 2785 | Stimulated PBMC by L. infantum Stimulated whole blood by L. infantum Stimulated PBMC by L. infantum Stimulated whole blood by L. infantum | CBA | 3,607 299.4 100.9 1179 | 0.96 1.00 0.90 0.98 | 84.62 100 84.62 91.67 | 93.33 100 100 95.45 | |
[30] | Active | ||||||
MIG: ND IP-10: ND | Stimulated whole blood by L. infantum | CBA | 34 555 | ND | ND | ND | |
Asymptomatic | |||||||
MIG: ND IP-10: ND | Stimulated whole blood by L. infantum | CBA | 34 555 | ND | ND | ND | |
After treatment | |||||||
MIG: ND IP-10: ND | Stimulated whole blood by L. infantum | CBA | 34 555 | ND | ND | ND | |
[19] | Active | ||||||
IP-10: 84.8 IP-10: 149.40 | Stimulated whole blood by L. infantum Stimulated whole blood by L. donovani | CBA | ND | ND | ND | ND | |
After treatment | |||||||
IP-10: 552.1 first week IP-10: 667.90 first week IP-10: 1284 end of treatment IP-10: 1979 end of treatment | Stimulated whole blood by L. infantum Stimulated whole blood by L. donovani Stimulated whole blood by L. infantum Stimulated whole blood by L. donovani | CBA | 452.9 | ND | ND | ND | |
[31] | ND | Stimulated whole blood by L. donovani | ELISA | ND | ND | ND | ND |
[32] | Asymptomatic | ||||||
IP-10: ND | Stimulated PBMC by L. infantum Stimulated whole blood by L. infantum | CBA | ND ND | 0.77 0.94 | 80 90 | 83.33 91.67 | |
After treatment | |||||||
IP-10: ND | Stimulated PBMC by L. infantum Stimulated whole blood by L. infantum | CBA | ND ND | 0.81 0.94 | 78.57 90.91 | 100 100 | |
[33] | Asymptomatic | ||||||
MIG: 820 IP-10: 2272 | Stimulated whole blood by L. infantum | CBA | 375.3 762.5 | 0.93 0.96 | 78.57 93 | 100 95 | |
[34] | Asymptomatic | ||||||
MIG: ND | Stimulated PBMC by L. infantum | Luminex | 2072 | 0.87 | 71 | 100 | |
[35] | MIG: ND IP-10: ND | Plasma/Serum | CBA | ND | ND | ND | ND |
[10] | MIG: ND IP-10: ND | Serum | CBA | ND | ND | ND | ND |
Chemokine (pg/mL) | Active | Asymptomatic | After Treatment | |
---|---|---|---|---|
Immunocompetent | Immunocompetent | Immunocompromised * | Immunocompetent | |
SLA-stimulated MIG | 123.1 b | 892 (205.3–3598) a | 701.6 (583.1–820.0) a | 1033 b |
Unstimulated MIG | 11,110.2 (9986.7–12,022.5) c | 5649 (4108.1–8753.4) c | - | 7673.5 (5670.1–10,163.7) c |
SLA-stimulated IP-10 | 149.4 (84.80–270.1) a | 3303 (1416–16,040) a | 2528 (2272–2783) a | 1979 (1284–2638) a |
Unstimulated IP-10 | 857.4 (432.0–1628.2) c | <308.7 c | - | 380 (172–744) c |
Criteria | Studies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[18] | [28] | [20] | [29] | [21] | [30] | [19] | [31] | [32] | [33] | [34] | [35] | [10] | |
Question/objective sufficiently described? | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 |
Study design evident and appropriate? | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Method of subject/comparison group selection or source of information/input variables described and appropriate? | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 |
Subject (and comparison group, if applicable) characteristics sufficiently described? | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
If interventional and random allocation was possible, was it described? | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
If interventional and blinding of investigators was possible, was it reported? | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
If interventional and blinding of subjects was possible, was it reported? | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Outcome and (if applicable) exposure measure(s) well defined and robust to measurement / misclassification bias? Means of assessment reported? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sample size appropriate? | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 |
Analytic methods described/justified and appropriate? | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Some estimate of variance is reported for the main results? | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 |
Controlled for confounding? | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Results reported in sufficient detail? | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 | 0 | 0 |
Conclusions supported by the results? | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Maximum points | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Total points | 14 | 15 | 18 | 17 | 16 | 12 | 16 | 12 | 16 | 16 | 12 | 14 | 14 |
Summary score (%) | 70 | 75 | 90 | 85 | 80 | 60 | 80 | 60 | 80 | 80 | 60 | 70 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, B.E.F.; da Silva, E.D.; Barbosa Júnior, W.L.; Vieira, A.V.B.; Souza, R.d.S.; Paiva, M.K.d.S.; Farias, P.C.S.; Guedes, D.L.; Bezerra, G.S.N.; de Medeiros, Z.M. Evaluation of Chemokines MIG and IP-10 as Immunological Biomarkers of Human Visceral Leishmaniasis: A Systematic Review. Trop. Med. Infect. Dis. 2024, 9, 219. https://doi.org/10.3390/tropicalmed9090219
Monteiro BEF, da Silva ED, Barbosa Júnior WL, Vieira AVB, Souza RdS, Paiva MKdS, Farias PCS, Guedes DL, Bezerra GSN, de Medeiros ZM. Evaluation of Chemokines MIG and IP-10 as Immunological Biomarkers of Human Visceral Leishmaniasis: A Systematic Review. Tropical Medicine and Infectious Disease. 2024; 9(9):219. https://doi.org/10.3390/tropicalmed9090219
Chicago/Turabian StyleMonteiro, Bruna Eduarda Freitas, Elis Dionísio da Silva, Walter Lins Barbosa Júnior, Amanda Virginia Batista Vieira, Roberta dos Santos Souza, Maria Karollyne dos Santos Paiva, Pablo Cantalice Santos Farias, Diego Lins Guedes, Gilberto Silva Nunes Bezerra, and Zulma Maria de Medeiros. 2024. "Evaluation of Chemokines MIG and IP-10 as Immunological Biomarkers of Human Visceral Leishmaniasis: A Systematic Review" Tropical Medicine and Infectious Disease 9, no. 9: 219. https://doi.org/10.3390/tropicalmed9090219
APA StyleMonteiro, B. E. F., da Silva, E. D., Barbosa Júnior, W. L., Vieira, A. V. B., Souza, R. d. S., Paiva, M. K. d. S., Farias, P. C. S., Guedes, D. L., Bezerra, G. S. N., & de Medeiros, Z. M. (2024). Evaluation of Chemokines MIG and IP-10 as Immunological Biomarkers of Human Visceral Leishmaniasis: A Systematic Review. Tropical Medicine and Infectious Disease, 9(9), 219. https://doi.org/10.3390/tropicalmed9090219