Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria
Abstract
:1. Introduction
Year | Details | Reference(s) |
---|---|---|
Pre-1948 | The most prevalent theory before 1948 ascribed the origin of relapses to parasites in the reticulo-endothelial system | [44] |
1948 | Discovery of hepatic schizogony in the life cycle of primate Plasmodium. This led to malarial relapse being explained as the consequence of ongoing cycles of schizogony taking place in the liver (assumed to be the source of parasites for renewed erythrocytic schizogony) | [45] |
1976 | Discovery of the apicomplexan hypnozoite (non-malarial) by ultrastructural recognition of its sporozoite-like nature | [46] |
1976 | Occurrence of hypnozoites in the life cycle of Plasmodium predicted on the basis of non-plasmodial research results (by extrapolation) | [47] |
1978 | Coining of the term “hypnozoite” and its adoption for Plasmodium (in advance of and in anticipation of the future discovery of malarial hypnozoites) | [48,49] |
1980 | Discovery of the malarial hypnozoite, resulting in the hypnozoite hypothesis of relapse and latency in malaria becoming established | [50] |
2011 | First proposal in the post-hypnozoite-discovery era that there might be one or more hypnozoite-independent, non-bloodstream sources of homologous (specifically) Plasmodium vivax parasites in recurrences. Such recurrences would be recrudescences, not relapses. The suggestion is that P. vivax malarial recurrences are being over-attributed to hypnozoite activation | [51,52,53] |
2. Inactivation of Intra-Erythrocytic Stages of Plasmodium by Primaquine
3. Blood Schizontocidal Action of Tafenoquine
4. Effect of Hydrogen Peroxide on Plasmodium
5. Drug Combinations and Modifications
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vale, N.; Moreira, R.; Gomes, P. Primaquine revisited six decades after its discovery. Eur. J. Med. Chem. 2009, 44, 937–953. [Google Scholar] [CrossRef] [PubMed]
- Markus, M.B. Safety and efficacy of tafenoquine for Plasmodium vivax malaria prophylaxis and radical cure: Overview and perspectives. Ther. Clin. Risk. Manag. 2021, 17, 989–999. [Google Scholar] [CrossRef] [PubMed]
- John, G.K.; Douglas, N.M.; von Seidlein, L.; Nosten, F.; Baird, J.K.; White, N.J.; Price, R.N. Primaquine radical cure of Pasmodium vivax: A critical review of the literature. Malar. J. 2012, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Thriemer, K.; Ley, B.; von Seidlein, L. Towards the elimination of Plasmodium vivax malaria: Implementing the radical cure. PLoS Med. 2021, 18, e1003494. [Google Scholar] [CrossRef] [PubMed]
- Saita, S.; Roobsoong, W.; Khammaneechan, P.; Sukchan, P.; Lawpoolsri, S.; Sattabongkot, J.; Cui, L.; Okanurak, K.; Phuanukoonnon, S.; Parker, D.M. Community acceptability, participation, and adherence to mass drug administration with primaquine for Plasmodium vivax elimination in Southern Thailand: A mixed methods approach. Malar. J. 2023, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Flannery, E.L.; Markus, M.B.; Vaughan, A.M. Plasmodium vivax. Trends Parasitol. 2019, 35, 583–584. [Google Scholar] [CrossRef]
- von Seidlein, L.; White, N.J. Taking on Plasmodium vivax malaria: A timely and important challenge. PLoS Med. 2021, 18, e1003593. [Google Scholar] [CrossRef]
- Schwartz, E.; Regev-Yochay, G.; Kurnik, D. Short report: A consideration of primaquine dose adjustment for radical cure of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 2000, 62, 393–395. [Google Scholar] [CrossRef]
- Goller, J.L.; Jolley, D.; Ringwald, P.; Biggs, B.-A. Regional differences in the response of Plasmodium vivax malaria to primaquine as anti-relapse therapy. Am. J. Trop. Med. Hyg. 2007, 76, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Pukrittayakamee, S.; Imwong, M.; Chotivanich, K.; Singhasivanon, P.; Day, N.P.J.; White, N.J. A comparison of two short-course primaquine regimens for the treatment and radical cure of Plasmodium vivax malaria in Thailand. Am. J. Trop. Med. Hyg. 2010, 82, 542–547. [Google Scholar] [CrossRef]
- Santos, J.B.; Luz, F.C.O.; Deckers, F.A.L.; Tauil, P.L. Subdoses of primaquine in overweight patients and malaria vivax relapses: Report of two cases in the Federal District, Brazil. Rev. Soc. Bras. Med. Trop. 2010, 43, 749–750. [Google Scholar] [CrossRef]
- Chamma-Siqueira, N.N.; Viana, G.M.R.; de Oliveira, A.M. Higher-dose primaquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 2022, 387, 283. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.S.; Wilairatana, P.; Tang, D.B.; Heppner, D.G.; Brewer, T.G.; Krudsood, S.; Silachamroon, U.; Phumratanaprapin, W.; Siriyanonda, D.; Looareesuwan, S. Randomized trial of 3-dose regimens of tafenoquine (WR238605) versus low-dose primaquine for preventing Plasmodium vivax malaria relapse. Clin. Infect. Dis. 2004, 39, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.A.; Commons, R.J.; Tarning, J.; Simpson, J.A.; Llanos-Cuentas, A.; Lacerda, M.V.G.; Green, J.A.; Koh, G.C.K.W.; Chu, C.S.; Nosten, F.A.; et al. The clinical pharmacology of tafenoquine in the radical cure of Plasmodium vivax malaria: An individual patient data meta-analysis. eLife 2022, 11, e83433. [Google Scholar] [CrossRef] [PubMed]
- Barber, B.E.; Abd-Rahman, A.N.; Webster, R.; Potter, A.J.; Llewellyn, S.; Marquart, L.; Sahai, N.; Leelasena, I.; Birrell, G.N.; Edstein, M.D.; et al. Characterizing the blood-stage antimalarial activity of tafenoquine in healthy volunteers experimentally infected with Plasmodium falciparum. Clin. Infect. Dis. 2023, in press. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, W.; Malla, P.; Wang, C.; Lakshmi, S.; Kim, K.; Menezes, L.; Yang, Z.; Cui, L. Risk of hemolysis in Plasmodium vivax malaria patients receiving standard primaquine treatment in a population with high prevalence of G6PD deficiency. Infection 2023, 51, 213–222. [Google Scholar] [CrossRef]
- Pukrittayakamee, S.; Jittamala, P.; Watson, J.A.; Hanboonkunupakarn, B.; Leungsinsiri, P.; Poovorawan, K.; Chotivanich, K.; Bancone, G.; Chu, C.S.; Imwong, M.; et al. Pharmacometric assessment of primaquine-induced haemolysis in glucose-6-phosphate dehydrogenase deficiency. medRxiv 2023. [Google Scholar] [CrossRef]
- Yilma, D.; Groves, E.S.; Brito-Sousa, J.D.; Monteiro, W.M.; Chu, C.; Thriemer, K.; Commons, R.J.; Lacerda, M.V.G.; Price, R.N.; Douglas, N.M. Severe haemolysis during primaquine radical cure of Plasmodium vivax malaria: Two systematic reviews and individual patient data descriptive analyses. medRxiv 2023. [Google Scholar] [CrossRef]
- Woon, S.-A.; Moore, B.R.; Laman, M.; Tesine, P.; Lorry, L.; Kasian, B.; Yambo, P.; Yadi, G.; Pomat, W.; Batty, K.T.; et al. Ultra-short course, high-dose primaquine to prevent Plasmodium vivax infection following uncomplicated pediatric malaria: A randomized, open-label, non-inferiority trial of early versus delayed treatment. Int. J. Infect. Dis. 2023, 130, 189–195. [Google Scholar] [CrossRef]
- Siegel, S.V.; Amato, R.; Trimarsanto, H.; Sutanto, E.; Kleinecke, M.; Murie, K.; Whitton, G.; Taylor, A.R.; Watson, J.A.; Imwong, M.; et al. Lineage-informative microhaplotypes for spatio-temporal surveillance of Plasmodium vivax malaria parasites. medRxiv 2023. [Google Scholar] [CrossRef]
- Markus, M.B. The hypnozoite concept, with particular reference to malaria. Parasitol. Res. 2011, 108, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.; Zanghi, G.; Vaughan, A.M.; Kappe, S.H.I. Plasmodium vivax latent liver stage infection and relapse: Biological insights and new experimental tools. Annu. Rev. Microbiol. 2021, 75, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Ménard, R.; Tavares, J.; Cockburn, I.; Markus, M.; Zavala, F.; Amino, R. Looking under the skin: The first steps in malarial infection and immunity. Nat. Rev. Microbiol. 2013, 11, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Franken, G.; Richter, J.; Labisch, A. Can we be sure that the human Plasmodium exoerythrocytic developmental stages occur exclusively in the liver? Parasitol. Res. 2020, 119, 667–673. [Google Scholar] [CrossRef]
- Commons, R.J.; Simpson, J.A.; Watson, J.; White, N.J.; Price, R.N. Estimating the proportion of Plasmodium vivax recurrences caused by relapse: A systematic review and meta-analysis. Am. J. Trop. Med. Hyg. 2020, 103, 1094–1099. [Google Scholar] [CrossRef]
- Peters, W. Drugs that affect hypnozoites of Plasmodium. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 742. [Google Scholar] [CrossRef]
- Noviyanti, R.; Carey-Ewend, K.; Trianty, L.; Parobek, C.; Puspitasari, A.M.; Balasubramanian, S.; Park, Z.; Hathaway, N.; Utami, R.A.S.; Soebianto, S.; et al. Hypnozoite depletion in successive Plasmodium vivax relapses. PLoS Negl. Trop. Dis. 2022, 16, e0010648. [Google Scholar] [CrossRef]
- Shanks, G.D. Plasmodium vivax relapse rates in allied soldiers during the second world war: Importance of hypnozoite burden. Am. J. Trop. Med. Hyg. 2022, 107, 1173–1177. [Google Scholar] [CrossRef]
- Stadler, E.; Cromer, D.; Mehra, S.; Adekunle, A.L.; Flegg, J.A.; Anstey, N.M.; Watson, J.A.; Chu, C.S.; Mueller, I.; Robinson, L.J.; et al. Population heterogeneity in Plasmodium vivax relapse risk. PLoS Negl. Trop. Dis. 2022, 16, e0010990. [Google Scholar] [CrossRef]
- Markus, M.B. Biological concepts in recurrent Plasmodium vivax malaria. Parasitology 2018, 145, 1765–1771. [Google Scholar] [CrossRef]
- Markus, M.B. Theoretical origin of genetically homologous Plasmodium vivax malarial recurrences. S. Afr. J. Infect. Dis. 2022, 37, 369. [Google Scholar] [CrossRef]
- Machado Siqueira, A.; Lopes Magalhães, B.M.; Cardoso Melo, G.; Ferrer, M.; Castillo, P.; Martin-Jaular, L.; Fernández-Beccera, C.; Ordi, J.; Martinez, A.; Lacerda, M.V.G.; et al. Spleen rupture in a case of untreated Plasmodium vivax infection. PLoS Negl. Trop. Dis. 2012, 6, e1934. [Google Scholar] [CrossRef] [PubMed]
- Baro, B.; Deroost, K.; Raiol, T.; Brito, M.; Almeida, A.C.G.; de Menezes-Neto, A.; Figueiredo, E.F.G.; Alencar, A.; Leitão, R.; Val, F.; et al. Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile. PLoS Negl. Trop. Dis. 2017, 11, e0005365. [Google Scholar] [CrossRef] [PubMed]
- Obaldia, N., 3rd; Meibalan, E.; Sa, J.M.; Ma, S.; Clark, M.A.; Mejia, P.; Moraes Barros, R.R.; Otero, W.; Ferreira, M.U.; Mitchell, J.R.; et al. Bone marrow is a major parasite reservoir in Plasmodium vivax infection. mBio 2018, 9, e00625-18. [Google Scholar] [CrossRef] [PubMed]
- Kho, S.; Qotrunnada, L.; Leonardo, L.; Andries, B.; Wardani, P.A.I.; Fricot, A.; Henry, B.; Hardy, D.; Margyaningsih, N.I.; Apriyanti, D.; et al. Hidden biomass of intact malaria parasites in the human spleen. N. Engl. J. Med. 2021, 384, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- Kho, S.; Qotrunnada, L.; Leonardo, L.; Andries, B.; Wardani, P.A.I.; Fricot, A.; Henry, B.; Hardy, D.; Margyaningsih, N.I.; Apriyanti, D.; et al. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: A prospective human splenectomy study. PLoS Med. 2021, 18, e1003632. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.A.M.; Baro, B.; Raiol, T.C.; Ayllon-Hermida, A.; Safe, I.P.; Deroost, K.; Figueiredo, E.F.G.; Costa, A.G.; Armengol, M.d.P.; Sumoy, L.; et al. Morphological and transcriptional changes in human bone marrow during natural Plasmodium vivax malaria infections. J. Infect. Dis. 2022, 225, 1274–1283. [Google Scholar] [CrossRef]
- Markus, M.B. Malaria eradication and the hidden parasite reservoir. Trends Parasitol. 2017, 33, 492–495. [Google Scholar] [CrossRef]
- Cui, L.; Brashear, A.; Menezes, L.; Adams, J. Elimination of Plasmodium vivax malaria: Problems and solutions. In Current Topics and Emerging Issues in Malaria Elimination; Rodriguez-Morales, A.J., Ed.; IntechOpen Limited: London, UK, 2021; pp. 159–185. [Google Scholar] [CrossRef]
- Alemayehu, A. Biology and epidemiology of malaria recurrence: Implication for control and elimination. In Infectious Diseases Annual Volume 2022; Garbacz, K., Jarzembowski, T., Ran, Y., Samie, A., Saxena, S.K., Eds.; IntechOpen Limited: London, UK, 2022. [Google Scholar] [CrossRef]
- Angrisano, F.; Robinson, L.J. Plasmodium vivax—How hidden reservoirs hinder global malaria elimination. Parasitol. Int. 2022, 87, 102526. [Google Scholar] [CrossRef]
- Fernández-Beccera, C.; Aparici-Herraiz, I.; del Portillo, H.A. Cryptic erythrocytic infections in Plasmodium vivax, another challenge to its elimination. Parasitol. Int. 2022, 87, 102527. [Google Scholar] [CrossRef]
- Habtamu, K.; Petros, B.; Yan, G. Plasmodium vivax: The potential obstacles it presents to malaria elimination and eradication. Trop. Dis. Travel Med. Vaccines 2022, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Corradetti, A. Relapses and delayed primary attacks in malaria. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Shortt, H.E.; Garnham, P.C.C. Demonstration of a persisting exo-erythrocytic cycle in Plasmodium cynomolgi and its bearing on the production of relapses. Br. Med. J. 1948, 1, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Mehlhorn, H.; Markus, M.B. Electron microscopy of stages of Isospora felis of the cat in the mesenteric lymph node of the mouse. Z. Parasitenkd. 1976, 51, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Markus, M.B. Possible support for the sporozoite hypothesis of relapse and latency in malaria. Trans. R. Soc. Trop. Med. Hyg. 1976, 70, 535. [Google Scholar] [CrossRef]
- Markus, M.B. Terminology for invasive stages of protozoa of the subphylum Apicomplexa (Sporozoa). S. Afr. J. Sci. 1978, 74, 105–106. Available online: https://journals.co.za/doi/epdf/10.10520/AJA00382353_4860 (accessed on 20 February 2023).
- Markus, M.B. Malaria: Origin of the term “hypnozoite”. J. Hist. Biol. 2011, 44, 781–786. [Google Scholar] [CrossRef]
- Krotoski, W.A.; Krotoski, D.M.; Garnham, P.C.C.; Bray, R.S.; Killick-Kendrick, R.; Draper, C.C.; Targett, G.A.T.; Guy, M.W. Relapses in primate malaria: Discovery of two populations of exoerythrocytic stages. Preliminary note. Br. Med. J. 1980, 280, 153–154. [Google Scholar] [CrossRef]
- Markus, M.B. Origin of recurrent Plasmodium vivax malaria—A new theory. S. Afr. Med. J. 2011, 101, 682–684. Available online: http://www.samj.org.za/index.php/samj/article/view/5220/3455 (accessed on 20 February 2023).
- Markus, M.B. Source of homologous parasites in recurrent Plasmodium vivax malaria. J. Infect. Dis. 2012, 206, 622–623. [Google Scholar] [CrossRef]
- Markus, M.B. Dormancy in mammalian malaria. Trends Parasitol. 2012, 28, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Egwu, C.O.; Augereau, J.-M.; Reybier, K.; Benoit-Vical, F. Reactive oxygen species as the brainbox in malaria treatment. Antioxidants 2021, 10, 1872. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, M.; Rahlfs, S.; Jortzik, E.; Bogeski, I.; Becker, K. H2O2 dynamics in the malaria parasite Plasmodium falciparum. PLoS ONE 2017, 12, e0174837. [Google Scholar] [CrossRef]
- Rahbari, M.; Rahlfs, S.; Przyborski, J.M.; Schuh, A.K.; Hunt, N.H.; Fidock, D.A.; Grau, G.E.; Becker, K. Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded probes. Sci. Rep. 2017, 7, 10449. [Google Scholar] [CrossRef] [PubMed]
- Camarda, G.; Jirawatcharadech, P.; Priestly, R.S.; Saif, A.; March, S.; Wong, M.H.L.; Leung, S.; Miller, A.B.; Baker, D.A.; Alano, P.; et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun. 2019, 10, 3226. [Google Scholar] [CrossRef]
- Freese, J.A.; Sharp, B.L.; Ridl, F.C.; Markus, M.B. In vitro cultivation of southern African strains of Plasmodium falciparum and gametocytogenesis. S. Afr. Med. J. 1988, 73, 720–722. Available online: http://archive.samj.org.za/1988%20VOL%20LXXIII%20Jan-Jun/Articles/06%20June/2.11%20IN%20VITRO%20CULTIVATION%20OF%20SOUTHERN%20AFRICAN%20STRAINS%20OF%20PLASMODIUM%20FALCIPARUM%20AN%20DGAMETOCYTOGENE.pdf (accessed on 20 February 2023). [PubMed]
- Campo, B.; Vandal, O.; Wesche, D.L.; Burrows, J.N. Killing the hypnozoite—Drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog. Glob. Health 2015, 109, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Flannery, E.L.; Kangwanrangsan, N.; Chuenchob, V.; Roobsoong, W.; Fishbaugher, M.; Zhou, K.; Billman, Z.P.; Martinson, T.; Olsen, T.M.; Schäfer, C.; et al. Plasmodium vivax latent liver infection is characterized by persistent hypnozoites, hypnozoite-derived schizonts, and time-dependent efficacy of primaquine. Mol. Ther. Methods Clin. Dev. 2022, 26, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Voorberg-van der Wel, A.M.; Zeeman, A.-M.; Nieuwenhuis, I.G.; van der Werff, N.M.; Klooster, E.J.; Klop, O.; Vermaat, L.C.; Gupta, D.K.; Dembélé, L.; Diagana, T.T.; et al. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Commun. Biol. 2020, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Markus, M.B. Transition from plasmodial hypnozoite to schizont demonstrated. Trends Parasitol. 2020, 36, 407–408. [Google Scholar] [CrossRef]
- Markus, M.B. Do hypnozoites cause relapse in malaria? Trends Parasitol. 2015, 31, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Hernández, D.; Vijayan, K.; Zigweid, R.; Fenwick, M.K.; Sankaran, B.; Roobsoong, W.; Sattabongkot, J.; Glennon, E.K.K.; Myler, P.J.; Sunnerhagen, P.; et al. Identification of potent and selective N-myristoyltransferase inhibitors of Plasmodium vivax liver stage hypnozoites and schizonts. bioRxiv 2023. [Google Scholar] [CrossRef]
- Arnold, J.; Alving, A.S.; Hockwald, R.S.; Clayman, C.B.; Dern, R.J.; Beutler, E.; Flanagan, C.L.; Jeffery, G.M. The antimalarial action of primaquine against the blood and tissue stages of falciparum malaria (Panama, P-F-6 strain). J. Lab. Clin. Med. 1955, 46, 391–397. [Google Scholar] [PubMed]
- Pukrittayakamee, S.; Vanijanota, S.; Chantra, A.; Clemens, R.; White, N.J. Blood stage antimalarial efficacy of primaquine in Plasmodium vivax malaria. J. Infect. Dis. 1994, 169, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Basco, L.K.; Bickii, J.; Ringwald, P. In-vitro activity of primaquine against the asexual blood stages of Plasmodium falciparum. Ann. Trop. Med. Parasitol. 1999, 93, 179–182. [Google Scholar] [CrossRef]
- Geary, T.G.; Divo, A.A.; Jensen, J.B. Activity of quinoline-containing antimalarials against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Pradines, B.; Mamfoumbi, M.M.; Tall, A.; Sokhna, C.; Koeck, J.-L.; Fusai, T.; Mosnier, J.; Czarnecki, E.; Spiegel, A.; Trape, J.-F.; et al. In vitro activity of tafenoquine against the asexual blood stages of Plasmodium falciparum isolates from Gabon, Senegal and Djibouti. Antimicrob. Agents Chemother. 2006, 50, 3225–3226. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; Avery, V.M. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar. J. 2013, 12, 408. [Google Scholar] [CrossRef]
- Dow, G.; Smith, B. The blood schizonticidal activity of tafenoquine makes an essential contribution to its prophylactic efficacy in nonimmune subjects at the intended dose (200 mg). Malar. J. 2017, 16, 209. [Google Scholar] [CrossRef]
- Peters, W.; Robinson, B.L.; Milhous, W.K. The chemotherapy of rodent malaria. LI. Studies on a new 8-aminoquinoline, WR 238,605. Ann. Trop. Med. Parasitol. 1993, 87, 547–552. [Google Scholar] [CrossRef]
- Obaldia, N., 3rd; Rossan, R.N.; Cooper, R.D.; Kyle, D.E.; Nuzum, E.O.; Rieckmann, K.H.; Shanks, G.D. WR 238605, chloroquine, and their combinations as blood schizonticides against a chloroquine-resistant strain of Plasmodium vivax in Aotus monkeys. Am. J. Trop. Med. Hyg. 1997, 56, 508–510. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.D.; Milhous, W.K.; Rieckmann, K.H. The efficacy of WR238605 against the blood stages of a chloroquine resistant strain of Plasmodium vivax. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Markus, M.B. Killing of Plasmodium vivax by primaquine and tafenoquine. Trends Parasitol. 2019, 35, 857–859. [Google Scholar] [CrossRef]
- Clark, I.A.; Hunt, N.H. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect. Immun. 1983, 39, 1–6. [Google Scholar] [CrossRef]
- Dockrell, H.M.; Playfair, J.H.L. Killing of blood-stage murine malaria parasites by hydrogen peroxide. Infect. Immun. 1983, 39, 456–459. [Google Scholar] [CrossRef] [PubMed]
- van Schalkwyk, D.A.; Saliba, K.J.; Biagini, G.A.; Bray, P.G.; Kirk, K. Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress. PLoS ONE 2013, 8, e58933. [Google Scholar] [CrossRef] [PubMed]
- Wezena, C.A.; Krafczyk, J.; Staudacher, V.; Deponte, M. Growth inhibitory effects of standard pro- and antioxidants on the human malaria parasite Plasmodium falciparum. Exp. Parasitol. 2017, 180, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Utaida, S.; Auparakkitanon, S.; Wilairat, P. Synergism of antimalarial antibiotics with hydrogen peroxide in inhibiting Plasmodium falciparum growth in culture. Southeast Asian J. Trop. Med. Public Health 2014, 45, 1–5. [Google Scholar] [PubMed]
- Kamchonwongpaisan, S.; Bunyaratvej, A.; Wanachiwanawin, W.; Yuthavong, Y. Susceptibility to hydrogen peroxide of Plasmodium falciparum infecting glucose-6-phosphate dehydrogenase-deficient erythrocytes. Parasitology 1989, 99, 171–174. [Google Scholar] [CrossRef]
- Sinha, A.; Chu, T.T.T.; Dao, M.; Chandramohanadas, R. Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci. Rep. 2015, 5, 9768. [Google Scholar] [CrossRef]
- Price, R.N.; von Seidlein, L.; Valecha, N.; Nosten, F.; Baird, J.K.; White, N.J. Global extent of chloroquine-resistant Plasmodium vivax: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Commons, R.J.; Simpson, J.A.; Thriemer, K.; Humphreys, G.S.; Abreha, T.; Alemu, S.G.; Añez, A.; Anstey, N.M.; Awab, G.R.; Baird, J.K.; et al. The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: A WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infect. Dis. 2018, 18, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Alving, A.S.; Arnold, J.; Hockwald, R.S.; Clayman, C.B.; Dern, R.J.; Beutler, E.; Flanagan, C.L. Potentiation of the curative action of primaquine in vivax malaria by quinine and chloroquine. J. Lab. Clin. Med. 1955, 46, 301–306. [Google Scholar] [PubMed]
- Ohrt, C.; Willingmyre, G.D.; Lee, P.; Knirsch, C.; Milhous, W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 2002, 46, 2518–2524. [Google Scholar] [CrossRef]
- Ramharter, M.; Noedl, H.; Thimasarn, K.; Wiedermann, G.; Wernsdorfer, G.; Wernsdorfer, W.H. In vitro activity of tafenoquine alone and in combination with artemisinin against Plasmodium falciparum. Am. J. Trop. Med. Hyg. 2002, 67, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Akoachere, M.; Buchholz, K.; Fischer, E.; Burhenne, J.; Haefeli, W.E.; Schirmer, R.H.; Becker, K. In vitro assessment of methylene blue on chloroquine-sensitive and -resistant Plasmodium falciparum strains reveals synergistic action with artemisinins. Antimicrob. Agents Chemother. 2005, 49, 4592–4597. [Google Scholar] [CrossRef]
- Bray, P.G.; Deed, S.; Fox, E.; Kalkandis, M.; Mungthin, M.; Deady, L.W.; Tilley, L. Primaquine synergises the activity of chloroquine against chloroquine-resistant P. falciparum. Biochem. Pharmacol. 2005, 70, 1158–1166. [Google Scholar] [CrossRef]
- Gorka, A.P.; Jacobs, L.M.; Roepe, P.D. Cytostatic versus cytocidal profiling of quinoline drug combinations via modified fixed-ratio isobologram analysis. Malar. J. 2013, 12, 332. [Google Scholar] [CrossRef]
- Cabrera, M.; Cui, L. In vitro activities of primaquine-schizonticide combinations on asexual blood stages and gametocytes of Plasmodium falciparum. Antimicrob. Agents Chemother. 2015, 59, 7650–7656. [Google Scholar] [CrossRef]
- Kemirembe, K.; Cabrera, M.; Cui, L. Interactions between tafenoquine and artemisinin-combination therapy partner drug in asexual and sexual stage Plasmodium falciparum. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 131–137. [Google Scholar] [CrossRef]
- Baird, J.K.; Basri, H.; Subianto, B.; Fryauff, D.J.; McElroy, P.D.; Leksana, B.; Richie, T.L.; Masbar, S.; Wignall, F.S.; Hoffman, S.L. Treatment of chloroquine-resistant Plasmodium vivax with chloroquine and primaquine or halofantrine. J. Infect. Dis. 1995, 171, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, Y.; Parker, D.M.; Gupta, B.; Yang, Z.; Liu, H.; Fan, Q.; Cao, Y.; Xiao, Y.; Lee, M.-C.; et al. Therapeutic responses of Plasmodium vivax malaria to chloroquine and primaquine treatment in Northeastern Myanmar. Antimicrob. Agents Chemother. 2015, 59, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.T.; Oliveira, I.S.; Gomes, J.; Aguiar, L.; Fontinha, D.; Duarte, D.; Nogueira, F.; Prudêncio, M.; Marques, E.F.; Teixeira, C.; et al. Drug-derived surface-active ionic liquids: A cost-effective way to expressively increase the blood-stage antimalarial activity of primaquine. ChemMedChem 2022, 17, e202100650. [Google Scholar] [CrossRef] [PubMed]
- Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem. 2015, 23, 5098–5119. [Google Scholar] [CrossRef]
- Zorc, B.; Perković, I.; Pavić, K.; Rajić, Z.; Beus, M. Primaquine derivatives: Modifications of the terminal amino group. Eur. J. Med. Chem. 2019, 182, 111640. [Google Scholar] [CrossRef]
- Capela, R.; Cabal, G.G.; Rosenthal, P.J.; Gut, J.; Mota, M.M.; Moreira, R.; Lopes, F.; Prudêncio, M. Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrob. Agents Chemother. 2011, 55, 4698–4706. [Google Scholar] [CrossRef]
- Miranda, D.; Capela, R.; Albuquerque, I.S.; Meireles, P.; Paiva, I.; Nogueira, F.; Amewu, R.; Gut, J.; Rosenthal, P.J.; Oliveira, R.; et al. Novel endoperoxide-based transmission-blocking antimalarials with liver- and blood-schizontocidal activities. ACS Med. Chem. Lett. 2014, 5, 108–112. [Google Scholar] [CrossRef]
- Kaur, H.; Machado, M.; de Kock, C.; Smith, P.; Chibale, K.; Prudêncio, M.; Singh, K. Primaquine-pyrimidine hybrids: Synthesis and dual-stage antiplasmodial activity. Eur. J. Med. Chem. 2015, 101, 266–273. [Google Scholar] [CrossRef]
- de Souza Pereira, C.; Quadros, H.C.; Aboagye, S.Y.; Fontinha, D.; D’Alessandro, S.; Byrne, M.E.; Gendrot, M.; Fonta, I.; Mosnier, J.; Moreira, D.R.M.; et al. A hybrid of amodiaquine and primaquine linked by gold(1) is a multistage antimalarial agent targeting heme detoxification and thiol redox homeostasis. Pharmaceutics 2022, 14, 1251. [Google Scholar] [CrossRef]
- Lödige, M.; Hiersch, L. Design and synthesis of novel hybrid molecules against malaria. Int. J. Med. Chem. 2015, 2015, 458319. [Google Scholar] [CrossRef]
- de Souza Pereira, C.; Quadros, H.C.; Moreira, D.R.M.; Castro, W.; Santos De Deus Da Silva, R.I.; Botelho Pereira Soares, M.; Fontinha, D.; Prudêncio, M.; Schmitz, V.; Dos Santos, H.F.; et al. A novel hybrid of chloroquine and primaquine linked by gold(1): Multitarget and multiphase antiplasmodial agent. ChemMedChem 2021, 16, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Capela, R.; Magalhães, J.; Miranda, D.; Machado, M.; Sanches-Vaz, M.; Albuquerque, I.S.; Sharma, M.; Gut, J.; Rosenthal, P.J.; Frade, R.; et al. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur. J. Med. Chem. 2018, 149, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Abreha, T.; Hwang, J.; Thriemer, K.; Tadesse, Y.; Girma, S.; Melaku, Z.; Assef, A.; Kassa, M.; Chatfield, M.D.; Landman, K.Z.; et al. Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomised controlled trial. PLoS Med. 2017, 14, e1002299. [Google Scholar] [CrossRef] [PubMed]
- Aparici-Herraiz, I.; Caires, H.R.; Castillo-Fernández, O.; Sima, N.; Méndez-Mora, L.; Risueño, R.M.; Sattabongkot, J.; Roobsoong, W.; Hernández-Machado, A.; Fernández-Beccera, C.; et al. Advancing key gaps in the knowledge of Plasmodium vivax cryptic infections using humanized mouse models and organs-on-chips. Front. Cell. Infect. Microbiol. 2022, 12, 920204. [Google Scholar] [CrossRef] [PubMed]
- Luiza-Batista, C.; Thiberge, S.; Serra-Hassoun, M.; Nardella, F.; Claës, A.; Nicolete, V.C.; Commère, P.-H.; Manico-Silva, L.; Ferreira, M.U.; Scherf, A.; et al. Humanized mice for investigating sustained Plasmodium vivax blood-stage infections and transmission. Nat. Commun. 2022, 13, 4123. [Google Scholar] [CrossRef]
- Markus, M.B. How does primaquine prevent Plasmodium vivax malarial recurrences? Trends Parasitol. 2022, 38, 924–925. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markus, M.B. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop. Med. Infect. Dis. 2023, 8, 278. https://doi.org/10.3390/tropicalmed8050278
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Tropical Medicine and Infectious Disease. 2023; 8(5):278. https://doi.org/10.3390/tropicalmed8050278
Chicago/Turabian StyleMarkus, Miles B. 2023. "Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria" Tropical Medicine and Infectious Disease 8, no. 5: 278. https://doi.org/10.3390/tropicalmed8050278
APA StyleMarkus, M. B. (2023). Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Tropical Medicine and Infectious Disease, 8(5), 278. https://doi.org/10.3390/tropicalmed8050278