Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany
Abstract
:1. Introduction
2. Climate Change Impacts and the Cities’ Agenda
3. Methods
4. Results and Discussion
4.1. Literature Review on Climate Change, Urban Resilience, and Smart Cities
4.2. Case Studies in Brazilian and German Smart Cities
4.2.1. Brazilian Cities
4.2.2. German Cities
4.2.3. Comparative Between the Brazilian and German Cities
4.3. Connections Between Literature Review and Case Studies in Brazilian and German Cities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World. Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421). 2019. Available online: https://population.un.org/wup/assets/WUP2018-Highlights.pdf (accessed on 1 May 2024).
- Intergovernmental Panel on Climate Change—IPCC. Climate Change 2022: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the IPCC, 2022; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- NOAA National Centers for Environmental Information, Monthly Regional Analysis for Annual 2023. Published Online January 2024. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global-regions/202313 (accessed on 21 February 2024).
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Amirzadeh, M.; Sobhaninia, S.; Sharifi, A. Urban resilience: A vague or an evolutionary concept? Sustain. Cities Soc. 2022, 81, 103853. [Google Scholar] [CrossRef]
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Hamilton, W.A.H. Resilience and the city: The water sector. Urban Des. Plan. 2015, 162, 109–121. [Google Scholar] [CrossRef]
- Leal Filho, W.; Balogun, A.L.; Olayide, O.E.; Azeiteiro, U.M.; Ayal, D.Y.; Muñoz, P.D.C.; Nagy, G.J.; Bynoe, P.; Oguge, O.; Yannick Toamukum, N.; et al. Assessing the impacts of climate change in cities and their adaptive capacity: Towards transformative approaches to climate change adaptation and poverty reduction in urban areas in a set of developing countries. Sci. Total Environ. 2019, 692, 1175–1190. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hochard, J.P. The impacts of climate change on the poor in disadvantaged regions. Rev. Environ. Econ. Policy 2018, 12, 26–47. [Google Scholar] [CrossRef]
- ICLEI. Relatório Analítico Cidades Inteligentes pelo Clima; ICLEI: São Paulo, Brazil, 2017. [Google Scholar]
- Papaioannou, C.; Dimara, A.; Papaioannou, A.; Tzitzios, I.; Anagnostopoulos, C.-N.; Krinidis, S. Hierarchical Resources Management System for Internet of Things-Enabled Smart Cities. Sensors 2025, 25, 616. [Google Scholar] [CrossRef]
- Nguyen, H.; Nawara, D.; Kashef, R. Connecting the Indispensable Roles of IoT and Artificial Intelligence in Smart Cities: A Survey. J. Inf. Intell. 2024, 2, 261–285. [Google Scholar] [CrossRef]
- Rana, N.P.; Luthra, S.; Mangla, S.K.; Islam, R.; Roderick, S.; Dwivedi, Y.K. Barriers to the development of smart cities in indian context. Inf. Syst. Front. 2019, 21, 503–525. [Google Scholar] [CrossRef]
- Shayan, S.; Kim, K.P.; Ma, T.; Nguyen, T.H.D. The first two decades of smart city research from a risk perspective. Sustainability 2020, 12, 9280. [Google Scholar] [CrossRef]
- Giffinger, R.; Fertner, C.; Kalasek, R.; Kramar, H. Smart Cities: Ranking of European Medium-Sized Cities; Vienna University of Technology: Vienna, Austria, 2007. [Google Scholar]
- Caragliu, A.; Bo, C.D.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Marchetti, D.; Oliveira, R.; Figueira, A.R. Are global north smart city models capable to assess Latin American cities? A model and indicators for a new context. Cities 2019, 92, 197–207. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Reid, A. Strategic principles for smart city development: A multiple case study analysis of European best practices. Technol. Forecast. Soc. Change 2019, 142, 70–97. [Google Scholar] [CrossRef]
- Mulligan, C.E.; Olsson, M. Architectural implications of smart city business models: An evolutionary Perspective. IEEE Commun. Mag. 2013, 51, 80–85. [Google Scholar] [CrossRef]
- ISO 37120:2018; Sustainable Cities and Communities—Indicators for City Services and Quality of Life. International Organization for Standardization: Geneva, Switzerland, 2019.
- European Parliament. Mapping Smart Cities in the EU. European Parliament—Directorate General for Internal Policies—Policy Department A: Economic and Scientific Policy; European Parliament: Strasbourg, France, 2014; 200p, Available online: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/507480/IPOL-ITRE_ET(2014)507480_EN.pdf (accessed on 1 May 2024).
- Kummitha, R.K.; Crutzen, N. How do we understand smart cities? An evolutionary perspective. Cities 2017, 67, 43–52. [Google Scholar] [CrossRef]
- Sta, H.B. Quality and the efficiency of data in “smart-cities”. Future Gener. Comput. Syst. 2017, 74, 409–416. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Li, D.Z.; Feng, H.B.; Gu, T.T.; Hewage, K.; Sadiq, R. Smart city and resilient city: Differences and connections. Wiley Interdiscip. Rev.-Data Min. Knowl. Discov. 2020, 10, e1388. [Google Scholar] [CrossRef]
- Genari, D.; Costa, L.F.; Savaris, T.P.; Macke, J. Smart Cities e o Desenvolvimento Sustentável: Revisão de literatura e perspectivas de pesquisas futuras. Rev. Ciências Adm. 2018, 20, 69–85. [Google Scholar]
- Obringer, R.; Nateghi, R. What makes a city “smart” in the Anthropocene? A critical review of smart cities under climate change. Sustain. Cities Soc. 2021, 75, 103278. [Google Scholar] [CrossRef]
- Liang, D.; De Jong, M.; Schraven, D.; Wang, L. Mapping key features and dimensions of the inclusive city: A systematic bibliometric analysis and literature study. Int. J. Sustain. Dev. World Ecol. 2022, 29, 60–79. [Google Scholar] [CrossRef]
- Hoornweg, D.; Sugar, L.; Trejos Gomez, C.L. Cities and greenhouse gas emissions: Moving forward. Environ. Urban 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Urban resilience for whom, what, when, where, and why? Urban Geogr. 2019, 40, 309–329. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Halsnæs, K. Integrated climate change risk assessment: A practical application for urban flooding during extreme precipitation. Clim. Serv. 2017, 6, 55–64. [Google Scholar] [CrossRef]
- Zhao, Y.; Sultan, B.; Vautard, R.; Braconnot, P.; Wang, H.J.; Ducharne, A. Potential escalation of heat-related working costs with climate and socioeconomic changes in China. Proc. Natl. Acad. Sci. USA 2016, 113, 4640–4645. [Google Scholar] [CrossRef]
- Duran-Encalada, J.A.; Paucar-Caceres, A.; Bandala, E.; Wright, G. The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. Eur. J. Oper. Res. 2017, 256, 567–581. [Google Scholar] [CrossRef]
- Argüeso, D.; Evans, J.P.; Pitman, A.J.; Di Luca, A. Effects of city expansion on heat stress under climate change conditions. PLoS ONE 2015, 10, e0117066. [Google Scholar] [CrossRef]
- Suzuki-Parker, A.; Kusaka, H.; Yamagata, Y. Assessment of the impact of metropolitan-scale urban planning scenarios on the moist thermal environment under global warming: A study of the Tokyo metropolitan area using regional climate modeling. Adv. Meteorol. 2015, 2015, 693754. [Google Scholar] [CrossRef]
- European Environment Agency—EEA. Urban Sustainability Issues—What Is a Resource-Efficient City? Publications office of the European Union: Luxembourg, 2015. [Google Scholar]
- Purkus, A.; Hagemann, N.; Bedtke, N.; Gawel, E. Towards a sustainable innovation system for the German wood-based bioeconomy: Implications for policy design. J. Clean. Prod. 2018, 172, 3955–3968. [Google Scholar] [CrossRef]
- Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 1 May 2024).
- Cepal, N.U. The 2030 Agenda and the Sustainable Development Goals: An Opportunity for Latin America and the Caribbean. 2016. Available online: https://repositorio.cepal.org/server/api/core/bitstreams/6321b2b2-71c3-4c88-b411-32dc215dac3b/content (accessed on 1 May 2024).
- United Nations Office for Disaster Risk Reduction. The Sendai Framework for Disaster Risk Reduction 2015–2030. 2015. Available online: https://www.undrr.org/media/16176/download?startDownload=20240524 (accessed on 1 May 2024).
- Intergovernmental Panel on Climate Change—IPCC. Climate Change Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change—IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Leal Filho, W.; Modesto, F.; Nagy, G.J.; Saroar, M.; YannickToamukum, N.; Ha’apio, M. Fostering coastal resilience to climate change vulnerability in Bangladesh, Brazil, Cameroon and Uruguay: A cross-country comparison. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 579–602. [Google Scholar] [CrossRef]
- Revi, A.; Satterthwaite, D.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.; Solecki, W.; Gajjar, S.P.; Sverdlik, A. Towards transformative adaptation in cities: The IPCC’s Fifth Assessment. Environ. Urban. 2014, 26, 11–28. [Google Scholar] [CrossRef]
- Nordhaus, W. A Question of Balance: Economic Modeling of Global Warming; Yale: New Haven, CT, USA, 2008. [Google Scholar]
- Jenks, M.; Jones, C. Dimensions of the Sustainable City; Springer: London, UK, 2010. [Google Scholar]
- Ewing, R.; Bartholomew, K.; Winkelman, S.; Walters, J.; Chen, D. Growing Cooler: The Evidence on Urban Development and Climate Change; Urban Land Institute: Washington, DC, USA, 2008. [Google Scholar]
- Ziervogel, G.; Pelling, M.; Cartwright, A.; Chu, E.; Deshpande, T.; Harris, L.; Hyams, K.; Kaunda, J.; Klaus, B.; Michael, K.; et al. Inserting rights and justice into urban resilience: A focus on everyday risk. Environ. Urban. 2017, 29, 123–138. [Google Scholar] [CrossRef]
- Lu, Y.W.; Zhai, G.F.; Zhou, S.T.; Shi, Y.J. Risk reduction through urban spatial resilience: A theoretical framework. Hum. Ecol. Risk Assess. 2021, 27, 921–937. [Google Scholar] [CrossRef]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Bossio, C.F.; Ford, J.; Labbé, D. Adaptive capacity in urban areas of developing countries. Clim. Change 2019, 157, 279–297. [Google Scholar] [CrossRef]
- Vajjarapu, H.; Verma, A.; Gulzar, S. Adaptation Policy Framework for Climate Change Impacts on Transportation Sector in Developing Countries. Transp. Dev. Econ. 2019, 5, 3. [Google Scholar] [CrossRef]
- Geiger, L.; Thudium, G. International Climate Policy: An introduction to the climate regime and the initiatives adopted by Germany and China. Século XXI—Rev. Ciências Sociais 2018, 9, 54–69. [Google Scholar]
- Frey, K.; Barcellos, Z. Parâmetros para Análises Comparativas de Experiêcias Internacionais de Governança Metropolitana. In Governança Multinível e Desenvolvimento Regional Sustentável. Experiências do Brasil e da Alemanha; Carneiro, J.M.B., Frey, K., Eds.; Oficina Municipal: São Paulo, Brazil, 2018. [Google Scholar]
- Dubou, G.; Bichueti, R.S.; Costa, C.R.R.da.; Gomes, C.M.; Kneipp, J.M.; Kruglianskas, I. Creating Favorable Local Context for Entrepreneurship: The Importance of Sustainable Urban Development in Florianópolis, SC, Brazil. Sustainability 2022, 14, 10132. [Google Scholar] [CrossRef]
- Moraci, F.; Errigo, M.F.; Fazia, C.; Campisi, T.; Castelli, F. Cities under Pressure: Strategies and Tools to Face Climate Change and Pandemic. Sustainability 2020, 12, 7743. [Google Scholar] [CrossRef]
- de Jong, M.; Joss, S.; Schraven, D.; Zhan, C.J.; Weijnen, M. Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef]
- Serban, A.C.; Lytras, M.D. Artificial Intelligence for Smart Renewable Energy Sector in Europe—Smart Energy Infrastructures for Next Generation Smart Cities. IEEE Access 2020, 8, 77364–77377. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s AcademicWorld. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- VOSviewer. VOSviewer—Visualizing Scientific Landscapes. VOSviewer. 2024. Available online: https://www.vosviewer.com/ (accessed on 1 May 2024).
- van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2011. [Google Scholar] [CrossRef]
- Carvalho, M.M.; Fleury, A.; Lopes, A.P. An overview of the literature on technology roadmapping (TRM): Contributions and trends. Technol. Forecast. Soc. Change 2013, 80, 1418–1437. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research and Applications, 6th ed.; SAGE Publications, Inc.: New York, NY, USA, 2018; Available online: https://uk.sagepub.com/en-gb/eur/case-study-research-and-applications/book250150 (accessed on 1 May 2024).
- Connected Smart Cities. Ranking Connected Smart Cities. CSM. 2023. Available online: https://ranking.connectedsmartcities.com.br/ (accessed on 1 May 2024).
- IMD. IMD Smart City Index 2023; IMD: Zurich, Switzerland, 2023. [Google Scholar]
- Colding, J.; Wallhagen, M.; Sörqyist, P.; Marcus, L.; Hillman, K.; Samuelsson, K.; Barthel, S. Applying a Systems Perspective on the Notion of the Smart City. Smart Cities 2020, 3, 420–429. [Google Scholar] [CrossRef]
- Viitanen, J.; Kingston, R. Smart cities and green growth: Outsourcing democratic and environmental resilience to the global technology sector. Environ. Plan. A-Econ. Space 2014, 46, 803–819. [Google Scholar] [CrossRef]
- Zahoor, A.; Xu, T.; Wang, M.; Dawood, M.; Afrane, S.; Li, Y.; Chen, J.L.; Mao, G.Z. Natural and artificial green infrastructure (GI) for sustainable resilient cities: A scientometric analysis. Environ. Impact Assess. Rev. 2023, 101, 107139. [Google Scholar] [CrossRef]
- Kaluarachchi, Y. Potential advantages in combining smart and green infrastructure over silo approaches for future cities. Front. Eng. Manag. 2021, 8, 98–108. [Google Scholar] [CrossRef]
- Cavada, M.; Hunt, D.V.L.; Rogers, C.D.F. Do smart cities realise their potential for lower carbon dioxide emissions? Proc. Inst. Civ. Eng.-Eng. Sustain. 2016, 169, 243–252. [Google Scholar] [CrossRef]
- Akinyemi, F.O.; Ikanyeng, M.; Muro, J. Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City Environ. Interact. 2019, 4, 100029. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; García, E.H.; Mosavi, A.; Várkonyi-Kóczy, A.R. The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies 2019, 12, 3904. [Google Scholar] [CrossRef]
- Lim, T.C.; Wilson, B.; Grohs, J.R.; Pingel, T.J. Community-engaged heat resilience planning: Lessons from a youth smart city STEM program. Landsc. Urban Plan. 2022, 226, 104497. [Google Scholar] [CrossRef]
- Li, J.D.; Burian, S.J. Evaluating real-time control of stormwater drainage network and green stormwater infrastructure for enhancing flooding resilience under future rainfall projections. Resour. Conserv. Recycl. 2023, 198, 107123. [Google Scholar] [CrossRef]
- Lund, N.S.V.; Borup, M.; Madsen, H.; Mark, O.; Arnbjerg-Nielsen, K.; Mikkelsen, P.S. Integrated stormwater inflow control for sewers and green structures in urban landscapes. Nat. Sustain. 2019, 2, 1003–1010. [Google Scholar] [CrossRef]
- Khatibi, H.; Wilkinson, S.; Baghersad, M.; Dianat, H.; Ramli, H.; Suhatril, M.; Javanmardi, A.; Ghaedi, K. The resilient—Smart city development: A literature review and novel frameworks exploration. Built Environ. Proj. Asset Manag. 2021, 11, 493–510. [Google Scholar] [CrossRef]
- Khatibi, H.; Wilkinson, S.; Sweya, L.N.; Baghersad, M.; Dianat, H. Navigating Climate Change Challenges through Smart Resilient Cities: A Comprehensive Assessment Framework. Land 2024, 13, 266. [Google Scholar] [CrossRef]
- Koens, K.; Melissen, F.; Mayer, I.; Aall, C. The Smart City Hospitality Framework: Creating a foundation for collaborative reflections on overtourism that support destination design. J. Destin. Mark. Manag. 2021, 19, 100376. [Google Scholar] [CrossRef]
- Wendling, L.A.; Huovila, A.; zu Castell-Rüdenhausen, M.; Hukkalainen, M.; Airaksinen, M. Benchmarking nature-based solution and smart city assessment schemes against the sustainable development goal indicator framework. Front. Environ. Sci. 2018, 6, 355767. [Google Scholar] [CrossRef]
- Nitoslawski, S.A.; Galle, N.J.; Van den Bosch, C.K.; Steenberg, J.W.N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- Allam, Z.; Bibri, S.E.; Jones, D.S.; Chabaud, D.; Moreno, C. Unpacking the “15-Minute City” via 6G, IoT, and Digital Twins: Towards a New Narrative for Increasing Urban Efficiency, Resilience, and Sustainability. Sensors 2022, 22, 1369. [Google Scholar] [CrossRef]
- Josipovic, N.; Viergutz, K. Smart Solutions for Municipal Flood Management: Overview of Literature, Trends, and Applications in German Cities. Smart Cities 2023, 6, 944–964. [Google Scholar] [CrossRef]
- Song, T.; Cai, J.M.; Chahine, T.; Li, L. Towards Smart Cities by Internet of Things (IoT)-a Silent Revolution in China. J. Knowl. Econ. 2021, 12, 578–594. [Google Scholar] [CrossRef]
- Lapao, L.V.; Correia, J.C.; Jevtic, M. Public Health Framework for Smart Cities within the Comprehensive Approach to Sustainability in Europe: Case Study of Diabetes. Sustainability 2023, 15, 4269. [Google Scholar] [CrossRef]
- Addas, A. The importance of urban green spaces in the development of smart cities. Front. Environ. Sci. 2023, 11, 1206372. [Google Scholar] [CrossRef]
- Jaroszweski, D.; Hooper, E.; Chapman, L. The impact of climate change on urban transport resilience in a changing world. Prog. Phys. Geogr.-Earth Environ. 2014, 38, 448–463. [Google Scholar] [CrossRef]
- Koop, S.H.A.; van Leeuwen, C.J. The challenges of water, waste and climate change in cities. Environ. Dev. Sustain. 2017, 19, 385–418. [Google Scholar] [CrossRef]
- Pee, L.G.; Pan, S.L. Climate-intelligent cities and resilient urbanisation: Challenges and opportunities for information research. Int. J. Inf. Manag. 2022, 63, 102446. [Google Scholar] [CrossRef]
- An, Y.; Liu, N.; Zhang, L.; Zheng, H.H. Adapting to climate risks through cross-border investments: Industrial vulnerability and smart city resilience. Clim. Change 2022, 174, 10. [Google Scholar] [CrossRef]
- Connelly, A.; O’Hare, P.; White, I. “The best flood I ever had”: Contingent resilience and the (relative) success of adaptive technologies. Cities 2020, 106, 102842. [Google Scholar] [CrossRef]
- Maiurova, A.; Kurniawan, T.A.; Kustikova, M.; Bykovskaia, E.; Othman, M.H.D.; Singh, D.; Goh, H.H. Promoting digital transformation in waste collection service and waste recycling in Moscow (Russia): Applying a circular economy paradigm to mitigate climate change impacts on the environment. J. Clean. Prod. 2022, 354, 131604. [Google Scholar] [CrossRef]
- Ragia, L.; Antoniou, V. Making Smart Cities Resilient to Climate Change by Mitigating Natural Hazard Impacts. ISPRS Int. J. Geo-Inf. 2020, 9, 153. [Google Scholar] [CrossRef]
- Fernández, C.G.; Peek, D. Smart and Sustainable? Positioning Adaptation to Climate Change in the European Smart City. Smart Cities 2020, 3, 511–526. [Google Scholar] [CrossRef]
- Ortega-Fernández, A.; Martín-Rojas, R.; García-Morales, V.J. Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability. Sustainability 2020, 12, 7860. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Cugurullo, F. The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability 2020, 12, 8548. [Google Scholar] [CrossRef]
- Esfandi, S.; Tayebi, S.; Byrne, J.; Taminiau, J.; Giyahchi, G.; Alavi, S.A. Smart Cities and Urban Energy Planning: An Advanced Review of Promises and Challenges. Smart Cities 2024, 7, 414–444. [Google Scholar] [CrossRef]
- Kaginalkar, A.; Kumar, S.; Gargava, P.; Niyogi, D. Stakeholder analysis for designing an urban air quality data governance ecosystem in smart cities. Urban Climate 2023, 48, 101403. [Google Scholar] [CrossRef]
- Tozer, L.; Bulkeley, H.; Xie, L.J. Transnational Governance and the Urban Politics of Nature-Based Solutions for Climate Change. Glob. Environ. Politics 2022, 22, 81–103. [Google Scholar] [CrossRef]
- Ariyaningsih; Shaw, R. Integration of SETS (Social-Ecological-Technological Systems) Framework and Flood Resilience Cycle for Smart Flood Risk Management. Smart Cities 2022, 5, 1312–1335. [Google Scholar] [CrossRef]
- Motta, M.; Neto, M.D.; Sarmento, P. A mixed approach for urban flood prediction using Machine Learning and GIS. Int. J. Disaster Risk Reduct. 2021, 56, 102154. [Google Scholar] [CrossRef]
- Ruess, P.; Lindner, R. Knowledge Management for Smart Cities-Standardization and Replication as Policy Instruments to Foster the Implementation of Smart City Solutions. Smart Cities 2023, 6, 2106–2124. [Google Scholar] [CrossRef]
- Broo, D.G.; Lamb, K.; Ehwi, R.J.; Parn, E.; Koronaki, A.; Makri, C.; Zomer, T. Built environment of Britain in 2040: Scenarios and strategies. Sustain. Cities Soc. 2021, 65, 102645. [Google Scholar] [CrossRef]
- Benites, A.J.; Simoes, A.F. Assessing the urban sustainable development strategy: An application of a smart city services sustainability taxonomy. Ecol. Indic. 2021, 127, 107734. [Google Scholar] [CrossRef]
- Ariyaningsih; Shaw, R. Community-Based Approach for Climate Resilience and COVID-19: Case Study of a Climate Village (Kampung Iklim) in Balikpapan, Indonesia. Land 2023, 12, 650. [Google Scholar] [CrossRef]
- Panganiban, E.B.; Padre, R.J.; Baguio, M.A.; Francisco, O.B.; Balderama, O.F. An Urban Water Infrastructure Management System Design with Storm Water Intervention for Smart Cities. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 306–313. [Google Scholar] [CrossRef]
- Sinha, K.C.; Labi, S.; Agbelie, B. Transportation infrastructure asset management in the new millennium: Continuing issues, and emerging challenges and opportunities. Transp. A-Transp. Sci. 2017, 13, 591–606. [Google Scholar] [CrossRef]
- Pultrone, G. The city challenges and the new frontiers of urban planning. Tema-J. Land Use Mobil. Environ. 2023, 16, 27–45. [Google Scholar] [CrossRef]
- Ribeiro, P.; Dias, G.; Pereira, P. Transport Systems and Mobility for Smart Cities. Appl. Syst. Innov. 2021, 4, 61. [Google Scholar] [CrossRef]
- Corsini, F.; Certomà, C.; Dyer, M.; Frey, M. Participatory energy: Research, imaginaries and practices on people’ contribute to energy systems in the smart city. Technol. Forecast. Soc. Change 2019, 142, 322–332. [Google Scholar] [CrossRef]
- Kakderi, C.; Komninos, N.; Panori, A.; Oikonomaki, E. Next City: Learning from Cities during COVID-19 to Tackle Climate Change. Sustainability 2021, 13, 3158. [Google Scholar] [CrossRef]
- Moglia, M.; Frantzeskaki, N.; Newton, P.; Pineda-Pinto, M.; Witheridge, J.; Cook, S.; Glackin, S. Accelerating a green recovery of cities: Lessons from a scoping review and a proposal for mission-oriented recovery towards post-pandemic urban resilience. Dev. Built Environ. 2021, 7, 100052. [Google Scholar] [CrossRef]
- Di Giulio, G.M.; Bedran-Martins, A.M.B.; Vasconcellos, M.P.; Ribeiro, W.C.; Lemos, M.C. Mainstreaming climate adaptation in the megacity of São Paulo, Brazil. Cities 2018, 72, 237–244. [Google Scholar] [CrossRef]
- Goers, S.; Rumohr, F.; Fendt, S.; Gosselin, L.; Jannuzzi, G.M.; Gomes, R.D.M.; Sousa, S.M.S.; Wolvers, R. The role of renewable energy in regional energy transitions: An aggregate qualitative analysis for the partner regions ba-varia, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape. Sustainability 2021, 13, 76. [Google Scholar] [CrossRef]
- Torres, P.H.C.; Jacobi, P.R.; Momm, S.; Leonel, A.L. Data and knowledge matters: Urban adaptation planning in São Paulo, Brazil. Urban Clim. 2021, 36, 100808. [Google Scholar] [CrossRef]
- Lamas, C.B.; Medeiros, T.F.; Santos, B.M.; Souza, E.P.; Caldeira, G.P.; Di Biase, L.; Lippe, M.I.G. Programa de Mobilidade Inteligente de São Paulo (Portuguese); World Bank Group: Washington, DC, USA, 2023; Available online: http://documents.worldbank.org/curated/en/099042623195036151/P17341408feb7502d0a5e90555bfc2af8b7 (accessed on 1 May 2024).
- Da Silva, A.T.; Buendía, M.P. Megacities in climate governance: The case of Rio de Janeiro. Meridiano 47. J. Glob. Stud. 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Mendes, V. Climate smart cities? Technologies of climate governance in Brazil. Urban Gov. 2022, 2, 270–281. [Google Scholar] [CrossRef]
- Rio de Janeiro City Government. Plan for Sustainable Development and Climate Action of the City of Rio de Janeiro—Executive Summary, 2021; Rio de Janeiro City Government: Rio de Janeiro, Brazil, 2021. Available online: https://www.rio.rj.gov.br/dlstatic/10112/12937849/4337196/Executive_Summary_finalok.pdf (accessed on 1 June 2024).
- Fryszman, F.; Carstens, D.D.D.S.; Da Cunha, S.K. Smart mobility transition: A socio-technical analysis in the city of Curitiba. Int. J. Urban Sustain. Dev. 2019, 11, 141–153. [Google Scholar] [CrossRef]
- Lira, G.S.de; Lofhagen, J.C.P. Cidades inteligentes e o transporte urbano sustentável com bioenergia: Um estudo de caso de Curitiba, Brasil. Rev. Tecnol. E Soc. 2022, 18, 207–220. [Google Scholar] [CrossRef]
- Miranda, H.F.; Rodrigues da Silva, A.Ô.N. Benchmarking sustainable urban mobility: The case of Curitiba, Brazil. Transp. Policy 2012, 21, 141–151. [Google Scholar] [CrossRef]
- Macadar, M.A.; Lheureux-De-Freitas, J. Porto Alegre: A Brazilian city searching to be smarter. In Proceedings of the ACM International Conference Proceeding Series, Quebec, QC, Canada, 17–20 June 2013; pp. 56–64. [Google Scholar] [CrossRef]
- Viale Pereira, G.; Cunha, M.A.; Lampoltshammer, T.J.; Parycek, P.; Testa, M.G. Increasing collaboration and participation in smart city governance: A cross-case analysis of smart city initiatives. Inf. Technol. Dev. 2017, 23, 526–553. [Google Scholar] [CrossRef]
- Viegas, C.V.; Saldanha, D.L.; Bond, A.; Ribeiro, J.L.D.; Selig, P.M. Urban land planning: The role of a Master Plan in influencing local temperatures. Cities 2013, 35, 1–13. [Google Scholar] [CrossRef]
- Bonatti, M.; Lana, M.A.; D’Agostini, L.R.; de Vasconcelos, A.C.F.; Sieber, S.; Eufemia, L.; da Silva-Rosa, T.; Schlindwein, S.L. Social representations of climate change and climate adaptation plans in southern Brazil: Challenges of genuine participation. Urban Clim. 2019, 29, 100496. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Sabatini-Marques, J.; Lorenzi, C.; Bernardinetti, N.; Schreiner, T.; Fachinelli, A.; Wittmann, T. Towards Smart Florianópolis: What Does It Take to Transform a Tourist Island into an Innovation Capital? Energies 2018, 11, 3265. [Google Scholar] [CrossRef]
- FloripAmanha. Agenda Floripa 2030/2040/205. 2023. Available online: https://materiais.floripamanha.org/floripa-2030-2040-2050 (accessed on 1 June 2024).
- Cepeliauskaite, G.; Keppner, B.; Simkute, Z.; Stasiskiene, Z.; Leuser, L.; Kalnina, I.; Kotovica, N.; Andiņš, J.; Muiste, M. Smart-Mobility Services for Climate Mitigation in Urban Areas: Case Studies of Baltic Countries and Germany. Sustainability 2021, 13, 4127. [Google Scholar] [CrossRef]
- Creutzig, F.; Franzen, M.; Moeckel, R.; Heinrichs, D.; Nagel, K.; Nieland, S.; Weisz, H. Leveraging digitalization for sustainability in urban transport. Glob. Sustain. 2019, 2, e14. [Google Scholar] [CrossRef]
- Senate Department for Urban Mobility, Transport, Climate Action, and the Environment. BEK 2030—Berlin Energy and Climate Protection Programme 2030. 2019. Available online: https://www.berlin.de/sen/uvk/_assets/klimaschutz/publikationen/bek2030_broschuere_en.pdf?ts=1705017672 (accessed on 1 June 2024).
- Abayneh Abebe, Y.; Ghorbani, A.; Nikolic, I.; Manojlovic, N.; Gruhn, A.; Vojinovic, Z. The role of household adaptation measures in reducing vulnerability to flooding: A coupled agent-based and flood modelling approach. Hydrol. Earth Syst. Sci. 2020, 24, 5329–5354. [Google Scholar] [CrossRef]
- Kutty, A.A.; Wakjira, T.G.; Kucukvar, M.; Abdella, G.M.; Onat, N.C. Urban resilience and livability performance of European smart cities: A novel machine learning approach. J. Clean. Prod. 2022, 378, 134203. [Google Scholar] [CrossRef]
- Morishita-Steffen, N.; Alberola, R.; Mougeot, B.; Vignali, É.; Wikström, C.; Montag, U.; Gastaud, E.; Lutz, B.; Hartmann, G.; Pfaffenbichler, F.X.; et al. Smarter together: Progressing smart data platforms in Lyon, Munich, and Vienna. Energies 2021, 14, 1075. [Google Scholar] [CrossRef]
- Gimpel, H.; Graf-Drasch, V.; Hawlitschek, F.; Neumeier, K. Designing smart and sustainable irrigation: A case study. J. Clean. Prod. 2021, 315, 128048. [Google Scholar] [CrossRef]
- Vanli, T. Ranking of Global Smart Cities Using Dynamic Factor Analysis. Soc. Indic. Res. 2024, 171, 405–437. [Google Scholar] [CrossRef]
- Saxon State Office for the Environment, Agriculture and Geology. State Flood Center. 2024. Available online: https://www.umwelt.sachsen.de/umwelt/infosysteme/lhwz/index.html (accessed on 1 June 2024).
- Prefeitura Municipal de Porto Alegre—PMPA. Programa Governo Digital. 2024. Available online: https://prefeitura.poa.br/pgd#:~:text=O%20que%20%C3%A9%3F,diversas%20%C3%A1reas%20da%20administra%C3%A7%C3%A3o%20p%C3%BAblica (accessed on 1 June 2024).
- Fachinelli, A.C.; Yigitcanlar, T.; Sabatini-Marques, J.; Cortese, T.T.P.; Sotto, D.; Libardi, B. Urban Smartness and City Performance: Identifying Brazilian Smart Cities through a Novel Approach. Sustainability 2023, 15, 10323. [Google Scholar] [CrossRef]
- Sabatini-Marques, J.; Yigitcanlar, T.; Schreiner, T.; Wittmann, T.; Sotto, D.; Inkinen, T. Strategizing Smart, Sustainable, and Knowledge-Based Development of Cities: Insights from Florianópolis, Brazil. Sustainability 2020, 12, 8859. [Google Scholar] [CrossRef]
- Akande, A.; Cabral, P.; Gomes, P.; Casteleyn, S. The Lisbon ranking for smart sustainable cities in Europe. Sustain. Cities Soc. 2019, 44, 475–487. [Google Scholar] [CrossRef]
- Becker, S.; von Schneidemesser, D.; Caseiro, A.; Götting, K.; Schmitz, S.; von Schneidemesser, E. Pop-up cycling infrastructure as a niche innovation for sustainable transportation in European cities: An inter- and transdisciplinary case study of Berlin. Sustain. Cities Soc. 2022, 87, 104168. [Google Scholar] [CrossRef]
- Senatsverwaltung Umwelt, Verkehr und Klimaschutz Berlin. Stadtentwicklungsplan Mobilität Und Verkehr Berlin 2030. 2021. Available online: https://www.berlin.de/sen/uvk/_assets/verkehr/verkehrspolitik/step/broschuere_stepmove.pdf (accessed on 1 June 2024).
- Partani, S.; Qiu, A.; Sattiraju, R.; Tayade, S.; Schotten, H.D. Quantitative Assessment of CCAM Applications on Greenhouse Gas Emissions. In Proceedings of the IEEE Vehicular Technology Conference, Helsinki, Finland, 19–22 June 2022; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Senatskanzlei Hamburg. Zweite Fortschreibung des Hamburger Klimaplans. 2023. Available online: https://www.hamburg.de/resource/blob/949036/4c902bd7090a09f16a600091cfc7a110/d-zweite-fortschreibung-hamburger-klimaplan-data.pdf (accessed on 1 June 2024).
- Morteza, A.; Chou, R.A. Distributed Matrix Multiplication: Download Rate, Randomness and Privacy Trade-Offs. In Proceedings of the 2024 60th Annual Allerton Conference on Communication, Control, and Computing, Urbana, IL, USA, 24–27 September 2024; IEEE: New York, NY, USA, 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Alawadhi, S.; Scholl, H.J. Smart governance: A cross-case analysis of smart city initiatives. In Proceedings of the Annual Hawaii International Conference on System Sciences, Koloa, HI, USA, 5–8 January 2016; IEEE: New York, NY, USA, 2016; pp. 2953–2963. [Google Scholar] [CrossRef]
- City of Frankfurt am Main. Masterplan 100% Climate Protection“—Frankfurt am Main, 2013. Available online: https://frankfurt.de/-/media/frankfurtde/frankfurt-themen/klima-und-energie/pdf/energiereferat-79a/masterplan-climate-protection---summarised-version.ashx (accessed on 1 June 2024).
Item | Features |
---|---|
Citizen Engagement | Participation of residents to report issues, provide feedback, and participate in city planning. |
Environmental Education | Efforts to raise awareness and educate residents about environmental issues and sustainability. |
Care with Public Spaces and Parks | Well-maintained and accessible green spaces that encourage outdoor activities and social interactions. |
Provisions of Emergency Response Systems | Technologies that improve the efficiency and effectiveness of emergency services. |
Availability of Online Learning Resources | Platforms that offer educational content and training programmes for different age groups. |
Accessible Services | Public services designed to be inclusive and accessible to all, including those with disabilities or limited mobility. |
Digital Inclusion | Efforts to ensure all residents have access to digital technologies and the internet, reducing the digital divide. |
Publication Titles | Record Count | % of 96 |
---|---|---|
Sustainability | 11 | 11.458 |
Smart Cities | 7 | 7.292 |
International Journal Of Disaster Risk Reduction | 4 | 4.167 |
Sustainable Cities And Society | 4 | 4.167 |
Frontiers In Environmental Science; Journal Of Cleaner Production; Land | 3 | 3.125 |
Authors | Record Count | % of 96 |
---|---|---|
Allam Z | 5 | 5.208 |
Sharifi A | 5 | 5.208 |
Shaw R | 3 | 3.125 |
Ariyaningsih; Baghersad M; Bibri SE; Dianat H; Fernández CG; Khatibi H; Khavarian-Garmsir AR; Peek D; Wilkinson S | 2 | 2.083 |
City, Country Population | Practices of Urban Resilience in Smart City Context | References |
---|---|---|
São Paulo, Brazil Pop. 12.3 million | Climate change has been part of the local agenda in São Paulo since 2003, where it is crucial to consider its social, political, and economic complexities and their interconnectedness. Projects and Activities in urban mobility, energy efficiency, and governance process are developed and planned. | Di Giulio et al. [113]; Goers et al. [114]; Torres et al. [115]; Lamas et al. [116] |
Rio de Janeiro, Brazil Pop. 6.7 million | The Plan for Sustainable Development and Climate Action aims to build policies based on the Sustainable Development Goals and include smart initiatives. Some initiatives such as the Neutral District Project and “Porto Maravilha” include concepts of resilience and smart cities. However, the smart city agenda still prioritises the economic and political aspects of techno-driven urban transformation. | Da Silva & Buendía [117]; Mendes [118]; Rio de Janeiro City Government [119] |
Curitiba, Brazil Pop. 1.7 million | Sustainable urban transport and GHG emissions reduction through smart mobility initiatives, including the implementation of renewable energy sources to supply urban public transportation and triple helix governance. | Fryszman et al. [120]; Lira & Lofhagen [121]; Miranda & Rodrigues da Silva [122] |
Porto Alegre, Brazil Pop. 1.3 million | Smart governance has a relevant role in city development, fostering collaboration between the public and private sectors and promoting innovation and technological advancement. The Master Plan is based on coordinating land use and zoning to address climate issues, but there are weaknesses in building, cartography, and social aspects, creating a lack of support for tackling the issue of rising temperatures. | Macadar & Lheureux-De-Freitas [123]; Viale Pereira et al. [124]; Viegas et al. [125] |
Florianópolis, Brazil Pop. 508.826 | One of the smartest Brazilian cities, standing out in the technology and innovation, health, safety, and entrepreneurship categories, Florianópolis has a potential innovation ecosystem while still having structural issues to deal with pertaining to climate change. The project Agenda Floripa 2030/2040/2050 includes initiatives that explore the city’s innovative and smart potential to address solutions, with the premise of “Humane Smart cities”. | Bonatti et al. [126]; Yigitcanlar et al. [127]; FloripAmanha [128]. |
Berlin, Germany Pop. 3.6 million | The Berlin Energy and Climate Protection Programme 2030—BEK 2030 includes a climate-friendly mobility plan of comprehensive measures for the mobility of citizens. In the role of smart-mobility, Berllin is planning the expansion of cycle paths and public transport networks, more car and bike sharing offers, and investments in electric mobility. | Cepeliauskaite et al. [129]; Creutzig et al. [130]; Senate Department for Urban Mobility, Transport, Climate Action, and the Environment [131] |
Hamburg, Germany Pop. 1.8 million | Smart solutions are helping the city improve its flood resilience, especially in managing flood risks, considering the digital twin approach. Simulation of extreme rain events to understand them and contribute to forward-looking urban planning, in the context of Hamburg’s Climate Plan. | Abebe et al. [132]; Josipovic & Viergutz [83] |
Munich, Germany Pop. 1.4 million | Munich has made a clear commitment to finding a healthy balance between smart technologies and practical solutions for people in their daily lives by utilising the concept of Smart Data. The goal is to create a solution that collects, analyses, and provides access to data that deliver benefits to residents and/or the entire city, co-creating resilience and liveability in their development model. | Kutty et al. [133]; Morishita-Steffen et al. [134] |
Frankfurt am Main, Germany Pop. 753.056 | One of the smartest global cities, Frankfurt has seen relevant advances in digital inclusion, cybersecurity, privacy, green technologies, and innovative communities. The development of a smart irrigation system for urban trees is a highlighted example of a solution. | Gimpel et al. [135]; Vanli [136] |
Dresden, Germany Pop. 554.649 | Smart solution addressing the challenges and helping the city to improve its flood resilience, considering the big data approach to support the decision-making process. | Josipovic & Viergutz [83]; Saxon State Office for the Environment, Agriculture and Geology [137] |
Brazilian Cities | German Cities | |
---|---|---|
Challenges | Social, political, and economic complexities (e.g., São Paulo); climate change adaptation, considering social inequalities and vulnerabilities in communities (e.g., Florianópolis); urban infrastructure, gaps in climate monitoring and energy efficiency (e.g., Porto Alegre); limitations in integrating smart city agendas with social welfare (e.g., Rio de Janeiro). | Balancing smart technologies and privacy/personal data (e.g., Berlin and Munich); adapting to specific climate risks such as floods (e.g., Hamburg and Dresden); digital inclusion and cyber security (e.g., Frankfurt). |
Smart Initiatives | Digital platforms for urban and environmental data (e.g., Geosampa in São Paulo); smart and sustainable mobility programs (e.g., São Paulo Smart Mobility, Hibribus in Curitiba); urban innovation and government digitalisation projects (e.g., Porto Maravilha in Rio de Janeiro, INOVAPOA in Porto Alegre); sustainability projects with a social focus (e.g., Agenda Floripa 2030 in Florianópolis). GHC emission reduction with clean technologies (Neutral District Project in Rio de Janeiro). | Digital systems for monitoring and transparency (biBEK in Berlin); intelligent mobility with car sharing and cycle paths (e.g., Frankfurt, Dresden, and Berlin); use of IoT and data analysis for urban irrigation (e.g., Frankfurt); integration of social data for flood management (e.g., Dresden); data-driven energy and traffic management (City Intelligence Platform in Munich); digital twin approach for flood simulation and urban planning (e.g., Hamburg) |
Governance Models | Participatory and collaborative urban governance, involving companies, universities and the public sector (e.g., triple helix model in Curitiba, INOVAPOA in Porto Alegre, innovation ecosystem in Florianópolis). Emphasis on local policies integrated with social development and poverty reduction (e.g., São Paulo). | Hybrid model combining hierarchical and networked, with high stakeholder participation (e.g., Munich). Smart governance with intensive use of digital platforms for transparency and monitoring (e.g., Berlin with biBEK). |
Resilience Strategies | Focus on adaptation integrated with local development, reduction in social and environmental vulnerabilities (e.g., São Paulo and Florianópolis); use of sustainable transportation (e.g., BRT in Curitiba); coordination of land use for climate issues (e.g., Porto Alegre) projects to reduce emissions and increase energy efficiency (e.g., São Paulo State Energy Plan). | Comprehensive carbon neutrality plans (e.g., Berlin 2050, Hamburg 2045, Frankfurt 2050); use of digital technologies for risk management (e.g., digital twin for floods in Hamburg); co-creation of resilience and liveability (e.g., Munich); smart systems for climate monitoring (e.g., Dresden). |
Cluster | Key Themes | Case Study Connections |
---|---|---|
Red Cluster | Climate change, green infrastructure, ecosystem services, and emissions. |
|
Green Cluster | Smart cities, urban resilience, indicators, digital twins, big data, and IoT. |
|
Blue Cluster | Adaptation/mitigation, AI, renewable energy, governance, flood risk |
|
Yellow Cluster | Resilience strategies and policies, community resilience, urban development |
|
Purple Cluster | Smart infrastructure, mobility, and energy. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bichueti, R.S.; Leal Filho, W.; Gomes, C.M.; Kneipp, J.M.; Costa, C.R.R.d.; Frizzo, K. Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany. Urban Sci. 2025, 9, 179. https://doi.org/10.3390/urbansci9050179
Bichueti RS, Leal Filho W, Gomes CM, Kneipp JM, Costa CRRd, Frizzo K. Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany. Urban Science. 2025; 9(5):179. https://doi.org/10.3390/urbansci9050179
Chicago/Turabian StyleBichueti, Roberto Schoproni, Walter Leal Filho, Clandia Maffini Gomes, Jordana Marques Kneipp, Carlos Rafael Röhrig da Costa, and Kamila Frizzo. 2025. "Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany" Urban Science 9, no. 5: 179. https://doi.org/10.3390/urbansci9050179
APA StyleBichueti, R. S., Leal Filho, W., Gomes, C. M., Kneipp, J. M., Costa, C. R. R. d., & Frizzo, K. (2025). Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany. Urban Science, 9(5), 179. https://doi.org/10.3390/urbansci9050179