Beyond the Canopy: In Situ Evidence of Urban Green Spaces’ Cooling Potential Across Three Chilean Cities
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Selection of Green Spaces Sample
2.1.2. Typology of Urban Green Spaces
2.2. General Explanation of Processing of Satellite Imagery
2.3. Calculation of Vegetation
2.4. Calculation of Temperatures from Remote Sensing
2.5. In-Situ Temperature Measurements
2.5.1. Measurement of the Temperature of Internal Components in Green Spaces
- Vegetation: including trees, shrubs, palm trees, herbaceous plants, and grass (healthy grass or lawn).
- Urban furniture: encompassing all components present in GS that aim to provide specific services to citizens, such as benches, playground equipment, and sports facilities.
- Impermeable surface: referring to the hard and compact surface, made of materials such as concrete and asphalt, which have low porosity and limit water infiltration.
- Semipermeable surface: characterized by a softer surface, typically composed of materials like sand, gravel, and pit sand, with higher porosity allowing for better water infiltration [41]. This category also includes eroded grass components, which are areas where the presence of grass cover has been eroded or deteriorated, resulting in an exposed vegetation-free surface.
2.5.2. Comparing Temperature of Green Spaces and Their Surroundings
2.6. Data Analysis
3. Results
3.1. Vegetation in Green Spaces and Surroundings
3.2. Temperature in Green Spaces and Surroundings
3.3. Relationship Between Remote Sensing and In Situ Temperature Measurements
3.4. Relationship Between Vegetation and Green Space Temperature
3.5. Analysis of Internal Components of the Green Spaces
4. Discussion
4.1. Comparing the Results Obtained from Remote Sensing Data and In Situ Measurements
4.2. Contribution of Green Spaces Vegetation to Urban Temperature
4.3. Thermal Trends of Green Spaces Components
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

References
- Ma, Y.; Zhao, M.; Li, J.; Wang, J.; Hu, L. Cooling effect of different land cover types: A case study in Xi’an and Xianyang, China. Sustainability 2021, 13, 1099. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.; Muttil, N.; Muthukumaran, S.; Wong, M. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Bowler, D.; Buyung-Ali, L.; Knight, T.; Pullin, A. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Santamouris, M. Recent Progress on Urban Overheating and Heat Island Research. Integrated Assessment of the Energy, Environmental, Vulnerability and Health Impact. Synergies with the Global Climate Change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Puliafito, S.E.; Bochaca, F.; Allende, D. Mitigación de la isla de calor urbana en ciudades de zonas áridas. Proyecciones 2013, 11, 29–45. Available online: https://ri.conicet.gov.ar/handle/11336/6578 (accessed on 11 September 2025).
- Tong, S.; Cheng, J.; Hoek, G. Urban heat: An increasing threat to global health. BMJ 2021, 375, n2467. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). Olas de Calor: Guía Para Acciones Basadas en la Salud; PAHO: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Cissé, G.; McLeman, R.; Adams, H.; Aldunce, P.; Bowen, K.; Campbell-Lendrum, D.; Clayton, S.; Ebi, K.L.; Hess, J.; Huang, C.; et al. Health, Wellbeing, and the Changing Structure of Communities. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2022; pp. 1041–1170. [Google Scholar] [CrossRef]
- World Economic Forum. Oliver Wyman. Quantifying the Impact of Climate Change on Human Health; World Economic Forum: Geneva, Switzerland, 2024; Available online: https://www.weforum.org/publications/quantifying-the-impact-of-climate-change-on-human-health/ (accessed on 11 September 2025).
- Ceballos, S.; Villanueva, J.; Quiroa, J. Importancia de la Infraestructura Verde y la Planeación Para el Desarrollo Urbano Sustentable; Universidad Autónoma de Coahuila: Saltillo, Mexico, 2020. [Google Scholar]
- Motazedian, A.; Leardini, P. Impact of green infrastructures on urban microclimates. A critical review. In Proceedings of the 46th Annual Conference of the Architectural Science Association (ANZAScA), Griffith University, Gold Coast, Australia, 14–16 November 2012. [Google Scholar]
- Caballero, E. Microclimas urbanos: La importancia de los materiales. In El clima, entre el mar y la montaña; Asociación Española de Climatología & Universidad de Cantabria: Santander, Spain, 2004; pp. 571–582. [Google Scholar]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Ochoa de la Torre, J.M. La Vegetación Como Instrumento Para el Control Microclimático. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1 October 1999. [Google Scholar] [CrossRef]
- Akbari, H.; Davis, S.; Dorsano, S.; Huang, J.; Winnett, S. Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing; U.S. Environmental Protection Agency, Office of Policy Analysis, Climate Change Division: Washington, DC, USA, 1992. [Google Scholar]
- Moss, J.; Doick, K.; Smith, S.; Shahrestani, M. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban For. Urban Green. 2019, 37, 65–73. [Google Scholar] [CrossRef]
- Haeffelin, M.; Ribaud, J.F.; Céspedes, J.; Dupont, J.C.; Lemonsu, A.; Masson, V.; Nagel, T.; Kotthaus, S. Impact of Boundary Layer Stability on Urban Park Cooling Effect Intensity. Atmos. Chem. Phys. 2024, 24, 14101–14122. [Google Scholar] [CrossRef]
- Halder, N.; Kumar, M.; Deepak, A.; Mandal, S.K.; Azmeer, A.; Mir, B.A.; Nurdiawati, A.; AI-Ghamdi, S.G. The Role of Urban Greenery in Enhancing Thermal Comfort: Systematic Review Insights. Sustainability 2025, 17, 2545. [Google Scholar] [CrossRef]
- Colaninno, N.; Salvati, A.; Lopez-Besora, J.; Morganti, M. District-Scale Cumulative Heat Stress Mapping Using Very-High-Resolution Spatiotemporal Simulation. Sustain. Cities Soc. 2025, 130, 106498. [Google Scholar] [CrossRef]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
- Yan, L.; Jia, W.; Zhao, S. The cooling effect of urban green spaces in metacities: A case study of Beijing, China’s capital. Remote Sens. 2021, 13, 4601. [Google Scholar] [CrossRef]
- Vaishaly, S.; Firoz, A.B.; Sridhar, K.; Govindaraju, M. Comprehensive analysis of urban heat island and climate change impact on the environment: An overview. J. Basic Sci. 2024, 24, 326–334. [Google Scholar]
- Cheval, S.; Amihăesei, V.-A.; Chitu, Z.; Dumitrescu, A.; Falcescu, V.; Irașoc, A.; Tudose, N.C. A systematic review of urban heat island and heat waves research (1991–2022). Clim. Risk Manag. 2024, 44, 100603. [Google Scholar] [CrossRef]
- Shi, H.; Xian, G.; Auch, R.; Gallo, K.; Zhou, Q. Urban heat island and its regional impacts using remotely sensed thermal data: A review of recent developments and methodology. Land 2021, 10, 867. [Google Scholar] [CrossRef]
- Siddiqui, P.; Roös, P.B.; Herron, M.; Jones, D.S.; Duncan, E.; Jalali, A.; Irshad, M. Urban Heat Island vulnerability mapping using advanced GIS data and tools. J. Earth Syst. Sci. 2022, 131, 266. [Google Scholar] [CrossRef]
- Martin, M.; Chong, A.; Biljecki, F.; Miller, C. Infrared thermography in the built environment: A multi-scale review. Renew. Sustain. Energy Rev. 2022, 165, 112540. [Google Scholar] [CrossRef]
- Azmeer, A.; Tahir, F.; Al-Ghamdi, S.G. Progress on Green Infrastructure for Urban Cooling: Evaluating Techniques, Design Strategies, and Benefits. Urban Clim. 2024, 56, 102077. [Google Scholar] [CrossRef]
- Cai, X.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J. Cooling Island Effect in Urban Parks from the Perspective of Internal Park Landscape. Humanit. Soc. Sci. Commun. 2023, 10, 674. [Google Scholar] [CrossRef]
- Menteş, Y.; Yilmaz, S.; Qaid, A. The Cooling Effect of Different Scales of Urban Parks on Land Surface Temperatures in Cold Regions. Energy Build. 2024, 308, 113954. [Google Scholar] [CrossRef]
- Colaninno, N.; Morello, E. Towards an Operational Model for Estimating Day and Night Instantaneous Near-Surface Air Temperature for Urban Heat Island Studies: Outline and Assessment. Urban Clim. 2022, 46, 101320. [Google Scholar] [CrossRef]
- Li, Y.; Svenning, J.C.; Zhou, W.; Zhu, K.; Abrams, J.F.; Lenton, T.M.; Ripple, W.J.; Yu, Z.; Teng, S.N.; Dunn, R.R.; et al. Green Spaces Provide Substantial but Unequal Urban Cooling Globally. Nat. Commun. 2024, 15, 7108. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadísticas (INE). Resultados XIX Censo Nacional de Población y VIII de Vivienda 2017. Available online: http://resultados.censo2017.cl/ (accessed on 11 September 2025).
- Sarricolea, P.; Herrera-Ossandón, M. Meseguer-Ruiz Ó Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Raimundo, S. Spatial Self-Organization in Santiago: Method and Applications. Ph.D. Thesis, Universidad Adolfo Ibáñez, Santiago, Chile, 2015. [Google Scholar]
- FLIR Systems. Manual del Usuario: Serie FLIR Cx; FLIR Systems: Wilsonville, OR, USA, 2016; p. 118. [Google Scholar]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, Y.; Dou, Y.; Chi, W.; Chen, G.; Gao, C.; Zhang, R. What are hot and what are not in an urban landscape: Quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc. Ecol. 2015, 30, 357–373. [Google Scholar] [CrossRef]
- Santamouris, M. Environmental Design of Urban Buildings: An Integrated Approach; Routledge: London, UK, 2013. [Google Scholar]
- Tan, J.K.N.; Belcher, R.N.; Tan, H.T.W.; Menz, S.; Schroepfer, T. The urban heat island mitigation potential of vegetation depends on local surface type and shade. Urban For. Urban Green. 2021, 62, 127128. [Google Scholar] [CrossRef]
- García, E. Termografía del cañón urbano: Uso de la perspectiva para una evaluación térmica global de la calle. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Ministerio de Vivienda y Urbanismo (MINVU). Manual de Elementos Urbanos Sustentables, Tomo II: Pavimentos y Circulaciones y Mobiliario Urbano; División Técnica de Estudio y Fomento Habitacional (DITEC): Santiago, Chile, 2018; Volume 3, ISBN 978-956-9432-16-3. [Google Scholar]
- Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef]
- Krishnan, P.; Meyers, T.P.; Hook, S.J.; Heuer, M.; Senn, D.; Dumas, E.J. Intercomparison of In Situ Sensors for Ground-Based Land Surface Temperature Measurements. Sensors 2020, 20, 5268. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Complete urban surface temperatures. J. Appl. Meteorol. 1997, 36, 1117–1132. [Google Scholar] [CrossRef]
- Al-Gretawee, H.; Rayburg, S.; Neave, M. The cooling effect of a medium sized park on an urban environment. Int. J. Geomate 2016, 11, 2541–2546. [Google Scholar] [CrossRef]
- Golden, J.S.; Kaloush, K.E. Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. Int. J. Pavement Eng. 2006, 7, 37–52. [Google Scholar] [CrossRef]
- Sarricolea, P.; Smith, P.; Romero-Aravena, H.; Serrano-Notivoli, R.; Fuentealba, M.; Meseguer-Ruiz, O. Socioeconomic inequalities and the surface heat island distribution in Santiago, Chile. Sci. Total Environ. 2022, 832, 155152. [Google Scholar] [CrossRef]
- Hartz, D.A.; Prashad, L.; Hedquist, B.C.; Golden, J.; Brazel, A.J. Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sens. Environ. 2006, 104, 190–200. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Chen, Y.; Wong, N.H. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies—A review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Andrade, H.; Vieira, R. A climatic study of an urban green space: The Gulbenkian Park in Lisbon (Portugal). Finisterra 2007, 42, 27–46. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing data. Urban For. Urban Green. 2019, 37, 154–167. [Google Scholar] [CrossRef]
- Stocco, S.; Cantón, M.; Correa, É. Evaluación de las condiciones térmicas de verano y eficiencia ambiental de distintos diseños de plazas urbanas en Mendoza, Argentina. Rev. Hábitat Sustentable 2013, 3, 19–34. [Google Scholar]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces: The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Lin, T.; Matzarakis, A.; Hwang, R.; Huang, Y. Effect of pavements’ albedo on long-term outdoor thermal comfort. In Proceedings of the 7th Conference on Biometeorology, Albert-Ludwigs-Universität Freiburg, Germany, 12–14 April 2010; pp. 497–503. [Google Scholar]
- Stull, R. Meteorology for Scientists and Engineers, 3rd ed.; University of British Columbia: Vancouver, BC, Canada, 2011. [Google Scholar]
- Taha, H.; Akbari, H.; Rosenfeld, A.; Huang, J. Residential cooling loads and the urban heat island—The effects of albedo. Build. Environ. 1988, 23, 271–283. [Google Scholar] [CrossRef]
- Stocco, S.; Cantón, M.; Correa, E. Incidencia de las plazas urbanas sobre el comportamiento térmico del entorno en alta densidad edilicia: El caso de la Ciudad de Mendoza, Argentina. Rev. Urbano 2018, 37, 94–106. [Google Scholar] [CrossRef]







| Vegetation | Temperature | |||||||
|---|---|---|---|---|---|---|---|---|
| Statistics | NDVI Green Spaces | NDVI Surroundings | VC Trees (%) | VC Grass (%) | LST Green Spaces (°C) | LST Surroundings (°C) | Ts Green Spaces (°C) | Ts Surroundings (°C) |
| Media (±SD) | 0.29 (±0.15) | 0.17 (±0.09) | 16.8 (±19.7) | 38.8 (±20.9) | 30.3 (±3.8) | 30.7 (±3.8) | 36.4 (±7.1) | 45.7 (±9.2) |
| Range (min–max) | 0.08–0.76 | 0.05–0.50 | 0–84.0 | 0–80.0 | 24.1–40.7 | 24.3–40.6 | 18.4–55.0 | 25.6–65.5 |
| Variables | Remote Sensing Data | In Situ Measurements | ||||||
|---|---|---|---|---|---|---|---|---|
| LST Green Spaces | LST Surroundings | NDVI Green Spaces | NDVI Surroundings | Ts Green Spaces | Ts Surroundings | Vc Trees | VC Grass | |
| Remote sensing data | ||||||||
| LST green spaces | 1 | 0.97 * | 0.23 * | −0.02 | ||||
| LST surroundings | 1 | 0.30 * | −0.03 | |||||
| NDVI green spaces | 1 | 0.63 * | ||||||
| NDVI surroundings | 1 | |||||||
| In situ measurements | ||||||||
| Ts green spaces | 0.39 * | 0.36 * | −0.21 * | −0.19 | 1 | 0.53 * | −0.37 * | −0.48 * |
| Ts surroundings | 0.66 * | 0.68 * | 0.28 * | 0.07 | 1 | −0.02 | −0.03 | |
| VC trees | −0.18 | −0.15 | 0.14 | −0.08 | 1 | 0.22 * | ||
| VC grass | −0.05 | <0.01 | 0.44 * | 0.24 * | 1 | |||
| Variables | Vegetation | |||
|---|---|---|---|---|
| NDVI Green Spaces | VC Trees | VC Grass | GS Typology | |
| Remote Sensing Data | ||||
| LST green spaces | 0.23 * | −0.18 | −0.05 | −0.34 * |
| Delta LST | −0.30 * | −0.22 * | −0.23 * | −0.20 * |
| In Situ Measurements | ||||
| Ts green spaces | −0.21 * | −0.37 * | −0.48 * | −0.39 * |
| Delta Ts | −0.52 * | −0.30 * | −0.40 * | −0.22 * |
| Statistics | GS with Scarce Tree Cover (n = 39) | GS with Medium Tree Cover (n = 20) | GS with High Tree Cover (n = 35) | |||
|---|---|---|---|---|---|---|
| Ts Green Spaces (°C) | Delta Ts (°C) | Ts Green Spaces (°C) | Delta Ts (°C) | Ts Green Spaces (°C) | Delta Ts (°C) | |
| Media (±SD) | 39.4 (±6.7) | −6.9 (±7.8) | 36.9 (±5.5) | −10.8 (±6.5) | 32.8 (±6.8) | −11.1 (±7.9) |
| Range (Min–Max) | 27.9–55.0 | −23.9–7.0 | 26.0–46.4 | −20.8–0.2 | 18.4–46.4 | −31.2–1.4 |
| Variables | LSC | MS | MC | ||||
|---|---|---|---|---|---|---|---|
| Media (±SD) | Group | Media (±SD) | Group | Media (±SD) | Group | ||
| Remote sensing data | LST green spaces (°C) | 26.7 (±1.3) | b | 33.8 (±2.1) | a | 32.3 (±2.8) | a |
| LST surroundings (°C) | 27.1 (±1.3) | b | 34.3 (±1.7) | a | 32.4 (±3.0) | a | |
| Delta LST (°C) | −0.4 (±0.6) | a | −0.5 (±0.9) | a | −0.1 (±1.2) | a | |
| NDVI green spaces | 0.23 (±0.12) | b | 0.35 (±0.14) | a | 0.34 (±0.16) | a | |
| NDVI surroundings | 0.14 (±0.05) | b | 0.16 (±0.09) | b | 0.23 (±0.11) | a | |
| In situ measurements | Ts green spaces (°C) | 33.8 (±6.7) | b | 40.5 (±6.0) | a | 35.8 (±6.8) | b |
| Ts surroundings (°C) | 38.8 (±6.7) | c | 55.3 (±5.2) | a | 45.6 (±5.4) | b | |
| Delta Ts (°C) | −5.0 (±5.7) | c | −14.8 (±7.6) | a | −9.8 (±6.7) | b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, K.; de la Barrera, F.; Salinas, V.; González, S.; Reyes-Paecke, S.; Truffello, R.; Salvati, A. Beyond the Canopy: In Situ Evidence of Urban Green Spaces’ Cooling Potential Across Three Chilean Cities. Urban Sci. 2025, 9, 485. https://doi.org/10.3390/urbansci9110485
Salgado K, de la Barrera F, Salinas V, González S, Reyes-Paecke S, Truffello R, Salvati A. Beyond the Canopy: In Situ Evidence of Urban Green Spaces’ Cooling Potential Across Three Chilean Cities. Urban Science. 2025; 9(11):485. https://doi.org/10.3390/urbansci9110485
Chicago/Turabian StyleSalgado, Karina, Francisco de la Barrera, Valentina Salinas, Sergio González, Sonia Reyes-Paecke, Ricardo Truffello, and Agnese Salvati. 2025. "Beyond the Canopy: In Situ Evidence of Urban Green Spaces’ Cooling Potential Across Three Chilean Cities" Urban Science 9, no. 11: 485. https://doi.org/10.3390/urbansci9110485
APA StyleSalgado, K., de la Barrera, F., Salinas, V., González, S., Reyes-Paecke, S., Truffello, R., & Salvati, A. (2025). Beyond the Canopy: In Situ Evidence of Urban Green Spaces’ Cooling Potential Across Three Chilean Cities. Urban Science, 9(11), 485. https://doi.org/10.3390/urbansci9110485

