Evaluating the Eco-Efficiency of Municipal Solid Waste Management: Determinants, Paradoxes, and Trade-Offs
Abstract
1. Introduction
2. Materials and Methods
2.1. Performance Measurement in MSW Management
2.2. The Measurement of MSW Eco-Efficiency Using DEA
2.3. Second-Stage Analysis Using Quantile Regression
2.4. Sample
2.5. Variables
2.5.1. Variables Used in DEA Model Specification
- per capita sorted waste (pcSW). This variable measures the amount of recyclable and recoverable waste generated per inhabitant, expressed in kilograms per year [23,46]. It serves as the desirable output in the model, reflecting the positive outcome of waste management efforts aimed at diverting waste from landfills and incineration towards recycling and material recovery. Higher values of pcSW indicate more effective sorting practices and greater alignment with environmental sustainability goals.
- per capita residual waste (pcRW) captures the amount of unsorted or residual waste produced per inhabitant, also expressed in kilograms per year [23,46]. It represents the undesirable output in the DEA framework, as it corresponds to waste that is typically sent to landfill or incineration, generating negative environmental externalities such as greenhouse gas emissions, soil and water contamination, and resource loss. Minimizing pcRW is therefore central to improving eco-efficiency in MSW services.
- per capita total waste management cost (pcTWC). This variable is used as the input in the DEA model and reflects the total cost of waste management services per inhabitant, measured in euros per year [27,32,54]. It encompasses the full range of operational expenses related to the collection, transport, and treatment of municipal waste. By evaluating how well municipalities convert this input into higher levels of desirable output (pcSW) and lower levels of undesirable output (pcRW), the model provides an integrated measure of cost-efficiency and environmental performance.
2.5.2. Exogeneous Variables
- sorting rate (SR), expressed as a percentage. This variable indicates the share of total municipal waste that is sorted for recycling and recovery [71]. A higher sorting rate is generally associated with more environmentally sustainable waste management practices and may reflect greater public environmental concern, stronger institutional incentives, or more efficient collection systems.
- per capita total waste generated (pcTW). This variable measures the total quantity of municipal solid waste produced per inhabitant, expressed in kilograms per year [24,72,73]. It reflects the consumption behavior of residents and the intensity of waste generation, which can influence both the scale and efficiency of local waste management services.
- population density (DENS). Calculated as the number of inhabitants per square kilometer, this variable captures the spatial concentration of the population [23,25,47]. Higher population density can facilitate more efficient waste collection due to shorter travel distances and greater service coverage per unit of input.
- municipality height above sea level (HEIGHT). Measured in meters, this variable represents the elevation of the municipality. It may serve as a proxy for geographic or topographic constraints that could affect transportation logistics, fuel consumption, or infrastructure deployment.
- per capita residual waste cost (pcRWC) is used to measure the cost per inhabitant for the management of residual (unsorted) waste, which typically includes landfill disposal or incineration [25,27,47]. High residual waste costs may signal inefficiencies or limited access to advanced treatment facilities, while lower costs could indicate better performance or cost-effective service models.
3. Results and Discussion
3.1. First Stage DEA
3.2. Second-Stage DEA
3.2.1. Eco-Efficiency Grouping Across the Distribution
3.2.2. Quantile Regression
3.3. Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MSW | Municipal solid waste |
DEA | Data Envelopment Analysis |
DDF | Directional Distance Function |
GDDF | Generalized Directional Distance Function |
VRS | Variable returns to scale |
CRS | Constant returns to scale |
EC | European Commission |
EU | European Union |
Appendix A
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | eco-efficiency | 1 | ||||||||
(2) | SR | 0.726 (0.000) | 1 | |||||||
(3) | pcTW | 0.151 (0.426) | 0.185 (0.074) | 1 | ||||||
(4) | pcSWC | 0.298 (0.000) | 0.471 (0.000) | 0.462 (0.000) | 1 | |||||
(5) | pcRWC | −0.392 (0.000) | −0.309 (0.000) | 0.409 (0.000) | −0.173 (0.140) | 1 | ||||
(6) | POP | 0.018 (1.000) | 0.066 (1.000) | −0.007 (1.000) | 0.022 (1.000) | −0.050 (1.000) | 1 | |||
(7) | AREA | 0.051 (1.000) | 0.078 (1.000) | 0.082 (1.000) | 0.106 (1.000) | −0.078 (1.000) | 0.798 (0.000) | 1 | ||
(8) | DENS | 0.111 (1.000) | 0.216 (0.011) | −0.094 (1.000) | 0.121 (1.000) | −0.086 (1.000) | 0.237 (0.003) | 0.029 (1.000) | 1 | |
(9) | HEIGHT | −0.003 (1.000) | −0.057 (1.000) | 0.285 (0.000) | 0.033 (1.000) | 0.153 (0.401) | −0.143 (0.637) | −0.093 (1.000) | −0.358 (0.000) | 1 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | eco-efficiency | 1 | ||||||||
(2) | SR | 0.496 (0.000) | 1 | |||||||
(3) | pcTW | −0.138 (0.000) | −0.068 (0.846) | 1 | ||||||
(4) | pcSWC | 0.029 (1.000) | 0.249 (0.000) | 0.539 (0.000) | 1 | |||||
(5) | pcRWC | −0.245 (0.000) | −0.299 (0.000) | 0.366 (0.000) | 0.003 (1.000) | 1 | ||||
(6) | POP | −0.050 (1.000) | 0.077 (0.391) | −0.005 (1.000) | 0.031 (1.000) | −0.072 (0.580) | 1 | |||
(7) | AREA | −0.060 (1.000) | 0.038 (1.000) | 0.109 (0.011) | 0.156 (0.000) | −0.037 (1.000) | 0.232 (0.000) | 1 | ||
(8) | DENS | −0.049 (1.000) | 0.073 (0.542) | −0.079 (0.325) | 0.025 (1.000) | −0.065 (1.000) | 0.402 (0.000) | −0.103 (0.022) | 1 | |
(9) | HEIGHT | −0.101 (0.028) | −0.148 (0.000) | 0.227 (0.000) | 0.081 (0.257) | 0.125 (0.011) | −0.139 (0.000) | 0.082 (0.228) | −0.271 (0.000) | 1 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | eco-efficiency | 1 | ||||||||
(2) | SR | 0.279 (0.000) | 1 | |||||||
(3) | pcTW | −0.104 (0.004) | 0.040 | 1 | ||||||
(4) | pcSWC | −0.078 (0.133) | 0.181 (1.000) | 0.483 (0.000) | 1 | |||||
(5) | pcRWC | −0.098 (0.010) | −0.224 (0.000) | 0.200 (0.000) | 0.061 (0.833) | 1 | ||||
(6) | POP | −0.014 (1.000) | 0.093 (0.019) | 0.118 (0.000) | 0.126 (0.000) | −0.022 (1.000) | 1 | |||
(7) | AREA | −0.041 (1.000) | 0.016 (1.000) | 0.085 (0.056) | 0.205 (0.000) | 0.041 (1.000) | 0.497 (0.000) | 1 | ||
(8) | DENS | −0.007 (1.000) | 0.132 (0.000) | 0.046 (1.000) | 0.011 (1.000) | −0.083 (0.077) | 0.443 (0.000) | −0.143 (0.000) | 1 | |
(9) | HEIGHT | −0.064 (0.622) | −0.235 (0.000) | 0.000 (1.000) | 0.020 (1.000) | 0.131 (0.000) | −0.215 (0.000) | 0.074 (0.215) | −0.254 (0.000) | 1 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | eco-efficiency | 1 | ||||||||
(2) | SR | 0.293 (0.000) | 1 | |||||||
(3) | pcTW | −0.038 (1.000) | 0.034 (1.000) | 1 | ||||||
(4) | pcSWC | −0.017 (1.000) | 0.066 (1.000) | 0.538 (0.000) | 1 | |||||
(5) | pcRWC | −0.101 (0.006) | −0.280 (0.000) | 0.283 (0.000) | 0.192 (0.000) | 1 | ||||
(6) | POP | −0.066 (0.522) | 0.093 (0.021) | 0.116 (0.000) | 0.119 (0.000) | −0.052 (1.000) | 1 | |||
(7) | AREA | −0.044 (1.000) | −0.023 (1.000) | 0.096 (0.012) | 0.205 (0.000) | 0.144 (0.000) | 0.425 (0.000) | 1 | ||
(8) | DENS | −0.016 (1.000) | 0.104 (0.004) | 0.029 (1.000) | −0.062 (0.775) | −0.167 (0.000) | 0.371 (0.000) | −0.212 (0.000) | 1 | |
(9) | HEIGHT | −0.049 (1.000) | −0.229 (0.000) | −0.025 (1.000) | −0.032 (1.000) | 0.163 (0.000) | −0.181 (0.000) | 0.181 (0.000) | −0.205 (0.000) | 1 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | eco-efficiency | 1 | ||||||||
(2) | SR | 0.240 (0.000) | 1 | |||||||
(3) | pcTW | 0.081 (0.249) | 0.001 (1.000) | 1 | ||||||
(4) | pcSWC | 0.059 (1.000) | 0.136 (0.000) | 0.516 (0.000) | 1 | |||||
(5) | pcRWC | −0.093 (0.071) | −0.263 (0.000) | 0.253 (0.000) | 0.176 (0.000) | 1 | ||||
(6) | POP | 0.004 (1.000) | 0.091 (0.088) | 0.106 (0.015) | 0.074 (0.498) | −0.042 (1.000) | 1 | |||
(7) | AREA | 0.026 (1.000) | −0.013 (1.000) | 0.063 (1.000) | 0.159 (0.000) | 0.114 (0.006) | 0.431 (0.000) | 1 | ||
(8) | DENS | −0.031 (1.000) | 0.158 (0.000) | 0.021 (1.000) | −0.080 (0.271) | −0.177 (0.000) | 0.287 (0.000) | −0.246 (0.000) | 1 | |
(9) | HEIGHT | −0.040 (1.000) | −0.268 (0.000) | 0.032 (1.000) | −0.003 (1.000) | 0.224 (0.000) | −0.176 (0.000) | 0.157 (0.000) | −0.236 (0.000) | 1 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | eco-efficiency | 1 | ||||||||
(2) | SR | −0.194 (0.045) | 1 | |||||||
(3) | pcTW | 0.344 (0.000) | −0.015 (1.000) | 1 | ||||||
(4) | pcSWC | 0.033 (1.000) | 0.134 (0.955) | 0.733 (0.000) | 1 | |||||
(5) | pcRWC | 0.059 (1.000) | −0.184 (0.078) | 0.556 (0.000) | 0.629 (0.000) | 1 | ||||
(6) | POP | −0.030 (1.000) | 0.121 (1.000) | 0.082 (1.000) | 0.093 (1.000) | −0.076 (1.000) | 1 | |||
(7) | AREA | −0.026 (1.000) | −0.169 (0.175) | 0.083 (1.000) | 0.102 (1.000) | 0.107 (1.000) | 0.516 (0.000) | 1 | ||
(8) | DENS | −0.040 (1.000) | 0.208 (0.019) | −0.061 (1.000) | −0.089 (1.000) | −0.222 (0.008) | 0.233 (0.004) | −0.308 (0.000) | 1 | |
(9) | HEIGHT | 0.131 (1.000) | −0.472 (0.000) | −0.133 (0.983) | −0.242 (0.002) | 0.066 (1.000) | −0.199 (0.033) | 0.328 (0.000) | −0.242 (0.002) | 1 |
Main Statistics | Main Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Median | St.dev. | Max | Min | Mean | Median | St.dev. | Max | Min |
Group 1 | Group 2 | |||||||||
pcSW | 190.52 | 200.90 | 98.65 | 486.86 | 0.00 | 278.77 | 276.90 | 100.82 | 821.30 | 33.26 |
pcRW | 374.27 | 333.39 | 143.25 | 958.70 | 147.35 | 228.55 | 193.11 | 107.38 | 913.55 | 111.59 |
pcTWC | 264.60 | 238.46 | 96.92 | 777.15 | 119.64 | 199.35 | 179.74 | 79.27 | 941.80 | 105.83 |
Group 3 | Group 4 | |||||||||
pcSW | 307.10 | 303.85 | 100.54 | 985.68 | 46.46 | 330.87 | 326.31 | 103.42 | 982.68 | 52.64 |
pcRW | 145.15 | 124.68 | 68.25 | 810.70 | 70.30 | 106.64 | 92.52 | 51.11 | 804.58 | 49.55 |
pcTWC | 167.07 | 150.70 | 77.14 | 1484.25 | 96.22 | 153.98 | 134.08 | 76.51 | 1005.12 | 83.02 |
Group 5 | Group 6 | |||||||||
pcSW | 358.27 | 343.46 | 129.44 | 1122.15 | 71.44 | 447.92 | 398.29 | 255.47 | 2088.21 | 67.91 |
pcRW | 82.30 | 68.71 | 52.46 | 705.84 | 25.50 | 83.55 | 53.79 | 102.79 | 1155.70 | 0.15 |
pcTWC | 151.02 | 125.85 | 81.18 | 838.18 | 68.94 | 148.38 | 106.87 | 142.39 | 1228.68 | 43.44 |
Appendix B
Appendix B.1. Supplementary Analyses for the Second-Stage DEA
Trees | Shrinkage | Loss Function | N (Train) | N (Validation) | N (Test) | Validation MSE | Test MSE |
---|---|---|---|---|---|---|---|
156 | 0.100 | Gaussian | 3530 | 883 | 1103 | 0.004 | 0.003 |
Value | |
---|---|
MSE | 0.003 |
MSE (scaled) | 0.232 |
RMSE | 0.058 |
MAE/MAD | 0.040 |
MAPE | ∞ |
R2 | 0.781 |
Variable | Relative Influence | Mean Dropout Loss |
---|---|---|
SR | 81.301 | 0.155 |
pcTW | 8.609 | 0.071 |
pcSWC | 5.097 | 0.070 |
pcRWC | 3.781 | 0.067 |
HEIGHT | 0.741 | 0.062 |
POP×DENS | 0.471 | 0.062 |
POP | 0.000 | 0.061 |
AREA | 0.000 | 0.061 |
DENS | 0.000 | 0.061 |
POP×AREA | 0.000 | 0.061 |
HEIGHT×POP | 0.000 | 0.061 |
HEIGHT×DENS | 0.000 | 0.061 |
HEIGHT×AREA | 0.000 | 0.061 |
Appendix B.2. Tobit Regression Analysis
Variable | Coefficient | Bootstrap Std. Err. | z | p > z | Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
intercept | 0.317 | 0.002 | 197.420 | 0.000 | 0.313 | 0.320 |
SR | 0.095 | 0.002 | 50.900 | 0.000 | 0.091 | 0.099 |
pcTW | 0.016 | 0.003 | 5.170 | 0.000 | 0.010 | 0.022 |
pcSWC | −0.017 | 0.002 | −7.910 | 0.000 | −0.021 | −0.013 |
zpcRWC | −0.010 | 0.002 | −5.040 | 0.000 | −0.013 | −0.006 |
zPOP | −0.027 | 0.015 | −1.800 | 0.073 | −0.055 | 0.002 |
zAREA | −0.003 | 0.002 | −1.370 | 0.171 | −0.006 | 0.001 |
DENS | −0.009 | 0.004 | −2.470 | 0.014 | −0.016 | −0.002 |
HEIGHT | 0.002 | 0.002 | 0.930 | 0.354 | −0.002 | 0.006 |
POPxDENS | 0.002 | 0.002 | 0.850 | 0.396 | −0.002 | 0.006 |
POPxAREA | 0.000 | 0.003 | 0.140 | 0.892 | −0.006 | 0.007 |
HEIGHTxPOP | −0.014 | 0.011 | −1.260 | 0.209 | −0.036 | 0.008 |
HEIGHTxDENS | −0.006 | 0.005 | −1.230 | 0.219 | −0.015 | 0.003 |
HEIGHTxAREA | 0.000 | 0.002 | 0.040 | 0.965 | −0.004 | 0.004 |
Log likelihood = 5880.0954 | ||||||
Wald chi2 (13) = 5225.63 | ||||||
Prob > chi2 = 0.0000 | ||||||
Pseudo R2 = −0.6699 |
References
- Di Foggia, G.; Beccarello, M. Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste. Waste Manag. 2020, 114, 202–214. [Google Scholar] [CrossRef]
- ISPRA. Rapporto Rifiuti Urbani, Edizione 2023. Available online: https://www.isprambiente.gov.it/files2023/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2023_n-393_versioneintegrale.pdf (accessed on 24 March 2024).
- ISPRA. Rapporto Rifiuti Urbani, Edizione 2024. Available online: https://www.isprambiente.gov.it/files2024/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2024_n406_versione_integrale.pdf (accessed on 2 June 2025).
- Lubello, C.; Fiaschi, S.; Notari, G. Municipal solid waste composition and efficiency of separate collection: A case study in Italy. Clean Waste Syst. 2025, 11, 100272. [Google Scholar] [CrossRef]
- Salmenperä, H.; Pitkänen, K.; Kautto, P.; Saikku, L. Critical factors for enhancing the circular economy in waste management. J. Clean. Prod. 2021, 280 Pt 1, 124339. [Google Scholar] [CrossRef]
- Tosato, G.; Medici, F. Circular Economy: A Network Analysis of the Solid Waste Collection in the City of Rome (Italy). J. Mater. Sci. Technol. Res. 2024, 11, 62–67. [Google Scholar] [CrossRef]
- EC. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0098 (accessed on 20 January 2025).
- EC. First Circular Economy Action Plan. 2015. Available online: https://environment.ec.europa.eu/topics/circular-economy/first-circular-economy-action-plan_en (accessed on 20 January 2025).
- Agovino, M.; Musella, G. EU Waste Regulation in a Linear-Circular Economy Transition: Waste Management in Italy; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- lo Storto, C. Effectiveness-efficiency nexus in municipal solid waste management: A non-parametric evidence-based study. Ecol. Indic. 2021, 131, 108185. [Google Scholar] [CrossRef]
- Beigl, P.; Lebersorger, S.; Salhofer, S. Modelling municipal solid waste generation: A review. Waste Manag. 2008, 28, 200–214. [Google Scholar] [CrossRef]
- Dawar, I.; Srivastava, A.; Singal, M.; Dhyani, N.; Rastogi, S. A systematic literature review on municipal solid waste management using machine learning and deep learning. Artif. Intell. Rev. 2025, 58, 183. [Google Scholar] [CrossRef]
- Morrissey, A.J.; Browne, J. Waste management models and their application to sustainable waste management. Waste Manag. 2004, 24, 297–308. [Google Scholar] [CrossRef]
- Alshaikh, R.; Abdelfatah, A. Optimization Techniques in Municipal Solid Waste Management: A Systematic Review. Sustainability 2024, 16, 6585. [Google Scholar] [CrossRef]
- Beliën, J.; De Boeck, L.; Van Ackere, J. Municipal Solid Waste Collection and Management Problems: A Literature Review. Transp. Sci. 2014, 48, 78–102. [Google Scholar] [CrossRef]
- Neto, A.B.P.S.; Simões, C.L.; Simoes, R. Optimization of municipal solid waste collection system: Systematic review with bibliometric literature analysis. J. Mater. Cycles Waste Manag. 2024, 26, 1906–1917. [Google Scholar] [CrossRef]
- Campitelli, A.; Schebek, L. How is the performance of waste management systems assessed globally? A systematic review. J. Clean. Prod. 2020, 272, 122986. [Google Scholar] [CrossRef]
- Eshet, T.; Ayalon, O.; Shechter, M. A critical review of economic valuation studies of externalities from incineration and landfilling. Waste Manag. Res. 2005, 23, 487–504. [Google Scholar] [CrossRef]
- Gentil, E.C.; Damgaard, A.; Hauschild, M.; Finnveden, G.; Eriksson, O.; Thorneloe, S.; Kaplan, P.O.; Barlaz, M.; Muller, O.; Matsui, Y.; et al. Models for waste life cycle assessment: Review of technical assumptions. Waste Manag. 2010, 30, 2636–2648. [Google Scholar] [CrossRef]
- Pearce, D.; Atkinson, G.; Mourato, S. Cost-Benefit Analysis and the Environment: Recent Developments; OECD: Paris, France, 2006. [Google Scholar]
- Simões, P.; Marques, R.C. On the economic performance of the waste sector. A literature review. J. Environ. Manag. 2012, 106, 40–47. [Google Scholar] [CrossRef]
- D’Inverno, G.; Carosi, L.; Romano, G. Meeting the challenges of the waste hierarchy: A performance evaluation of EU countries. Ecol. Indic. 2024, 160, 111641. [Google Scholar] [CrossRef]
- lo Storto, C. Measuring eco-efficiency of municipal solid waste management in Apulia to account for governance heterogeneities. Clean. Waste Syst. 2024, 7, 100131. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R.; Mocholi-Arce, M. The eco-efficiency of municipalities in the recycling of solid waste: A stochastic semi-parametric envelopment of data approach. Waste Manag. Res. 2023, 41, 1036–1045. [Google Scholar] [CrossRef]
- Romano, G.; Molinos-Senante, M. Factors affecting eco-efficiency of municipal waste services in Tuscan municipalities: An empirical investigation of different management models. Waste Manag. 2020, 105, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Sarra, A.; Mazzocchitti, M.; Rapposelli, A. Evaluating joint environmental and cost performance in municipal waste management systems through data envelopment analysis: Scale effects and policy implications. Ecol. Indic. 2017, 73, 756–771. [Google Scholar] [CrossRef]
- Benito-López, B.; Moreno-Enguix, M.; Solana-Ibañez, J. Determinants of efficiency in the provision of municipal street-cleaning and refuse collection services. Waste Manag. 2011, 31, 1099–1108. [Google Scholar] [CrossRef]
- Díaz-Villavicencio, G.; Didonet, S.R.; Dodd, A. Influencing factors of eco-efficient urban waste management: Evidence from Spanish municipalities. J. Clean. Prod. 2017, 164, 1486–1496. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. Designing waste management systems to meet circular economy goals: The Italian case. Sustain. Prod. Consum. 2021, 26, 1074–1083. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R. Estimating the eco-efficiency of urban waste services towards sustainable waste management. Sustain. Dev. 2024, 32, 5677–5691. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Dias, R.F.; Mattos, L.V.; Quelhas, O.L.G.; Filho, W.L. Towards sustainable development through the perspective of eco-efficiency: A systematic literature review. J. Clean. Prod. 2017, 165, 890–904. [Google Scholar] [CrossRef]
- lo Storto, C. Eco-productivity analysis of the municipal solid waste service in the Apulia region from 2010 to 2017. Sustainability 2021, 13, 12008. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Mocholi-Arce, M.; Maziotis, A.; Molinos-Senante, M. Eco-efficiency approach in sustainable waste management: An uncertainty analysis for Chile. Environ. Sci. Policy 2024, 160, 103859. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Mocholi-Arce, M.; Molinos-Senante, M.; Maziotis, A. Applying the Efficiency Analysis Tree Method for Enhanced Eco-Efficiency in Municipal Solid Waste Management: A Case Study of Chilean Municipalities. Clean. Technol. 2024, 6, 1565–1578. [Google Scholar] [CrossRef]
- Hirsch, W.Z. Cost functions of an urban government service: Refuse collection. Rev. Econ. Stat. 1965, 47, 87–92. [Google Scholar] [CrossRef]
- Kitchen, H.M. A statistical estimation of an operating cost function for municipal refuse collection. Public Financ. Rev. 1976, 4, 56–76. [Google Scholar] [CrossRef]
- Antonioli, B.; Filippini, M. Optimal size in the waste collection sector. Rev. Ind. Organ. 2002, 20, 239–252. [Google Scholar] [CrossRef]
- Callan, S.J.; Thomas, J.M. Economies of scale and scope: A cost analysis of municipal solid waste services. Land Econ. 2001, 77, 548–560. [Google Scholar] [CrossRef]
- Dijkgraaf, E.; Gradus, R.H. Cost savings of contracting out refuse collection. Empirica 2003, 30, 149–161. [Google Scholar] [CrossRef]
- Bel, G.; Fageda, X. Empirical analysis of solid management waste costs: Some evidence from Galicia, Spain. Resour. Conserv. Recycl. 2010, 54, 187–193. [Google Scholar] [CrossRef]
- Murillo-Zamorano, L.R.; Vega-Cervera, J.A. The use of parametric and non-parametric frontier methods to measure the productive efficiency in the industrial sector: A comparative study. Int. J. Prod. Econ. 2001, 69, 265–275. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Heshmati, A.; Hjalmarsson, L. Parametric approaches to productivity measurement: A comparison among alternative models. Scand. J. Econ. 1999, 101, 405–424. [Google Scholar] [CrossRef]
- Stolp, C. Strengths and weaknesses of data envelopment analysis: An urban and regional perspective. Comput. Environ. Urban Syst. 1990, 14, 103–116. [Google Scholar] [CrossRef]
- Vilardell, I.; Riera, I. L’eficiència en l’actuació de les administracions municipals: Una avaluació del servei de recollida de residus sòlids urbans. Rev. Econ. Catalunya 1989, 11, 20–33. [Google Scholar]
- Worthington, A.C.; Dollery, B.E. Measuring efficiency in local government: An analysis of New South Wales municipalities’ domestic waste management function. Policy Stud. J. 2001, 29, 232–249. [Google Scholar] [CrossRef]
- Guerrini, A.; Carvalho, P.; Romano, G.; Marques, R.C.; Leardini, C. Assessing efficiency drivers in municipal solid waste collection services through a non-parametric method. J. Clean. Prod. 2017, 147, 431–441. [Google Scholar] [CrossRef]
- Delgado-Antequera, L.; Gémar, G.; Molinos-Senante, M.; Gómez, T.; Caballero, R.; Sala-Garrido, R. Eco-efficiency assessment of municipal solid waste services: Influence of exogenous variables. Waste Manag. 2021, 130, 136–146. [Google Scholar] [CrossRef]
- Carvalho, P.; Marques, R.C.; Dollery, B. Is bigger better? An empirical analysis of waste management in New South Wales. Waste Manag. 2015, 39, 277–286. [Google Scholar] [CrossRef]
- Greco, G.; Allegrini, M.; Del Lungo, C.; Gori Savellini, P.; Gabellini, L. Drivers of solid waste collection costs: Empirical evidence from Italy. J. Clean. Prod. 2015, 106, 364–371. [Google Scholar] [CrossRef]
- Bohm, R.A.; Folz, D.H.; Kinnaman, T.C.; Podolsky, M.J. The costs of municipal waste and recycling programs. Resour. Conserv. Recycl. 2010, 54, 864–871. [Google Scholar] [CrossRef]
- Bae, S. Public versus private delivery of municipal solid waste services: The case of North Carolina. Contemp. Econ. Policy 2010, 28, 414–428. [Google Scholar] [CrossRef]
- Carvalho, P.; Marques, R.C. Economies of size and density in municipal solid waste recycling in Portugal. Waste Manag. 2014, 34, 12–20. [Google Scholar] [CrossRef]
- Lavee, D. Is municipal solid waste recycling economically efficient? Environ. Manag. 2007, 40, 926–943. [Google Scholar] [CrossRef]
- Daraio, C.; Di Leo, S.; Simar, L. Viable eco-efficiency targets for waste collection communities. Sci. Rep. 2024, 14, 15038. [Google Scholar] [CrossRef]
- Passarini, F.; Vassura, I.; Monti, F.; Morselli, L.; Villani, B. Indicators of waste management efficiency related to different territorial conditions. Waste Manag. 2011, 31, 785–792. [Google Scholar] [CrossRef]
- Simões, P.; De Witte, K.; Marques, R.C. Regulatory Structures and Operational Environment in the Portuguese Waste Sector. Waste Manag. 2010, 30, 1130–1137. [Google Scholar] [CrossRef]
- Liu, W.B.; Meng, W.; Li, X.X.; Zhang, D.Q. DEA models with undesirable inputs and outputs. Ann. Oper. Res. 2010, 173, 177–194. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An Application Procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Cheng, G.; Zervopoulos, P.D. Estimating the Technical Efficiency of Health Care Systems: A Cross-Country Comparison Using the Directional Distance Function. Eur. J. Oper. Res. 2014, 238, 899–910. [Google Scholar] [CrossRef]
- EU. Guidance on the Interpretation of Key Provisions of Directive 2008/98/EC on Waste. 2012. Available online: https://ec.europa.eu/environment/pdf/waste/framework/guidance_doc.pdf (accessed on 20 March 2021).
- Repubblica Italiana. Decreto Legislativo 152 del 3 Aprile 2006. Norme in Materia Ambientale. Gazzetta Ufficiale n. 88. 14 April 2006. Available online: https://www.isprambiente.gov.it/it/garante_aia_ilva/normativa/normativa-ambientale/Dlgs_152_06_TestoUnicoAmbientale.pdf (accessed on 20 December 2024).
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Davino, C.; Romano, R.; Vistocco, D. On the use of quantile regression to deal with heterogeneity: The case of multi-block data. Adv. Data Anal. Classif. 2020, 14, 771–784. [Google Scholar] [CrossRef]
- Agovino, M.; Ferrara, M.; Garofalo, A. Investigating the driving factors of the landfill disposal rate: A quantile regression for Italian data. Environ. Dev. Sustain. 2019, 21, 2913–2930. [Google Scholar] [CrossRef]
- Boubellouta, B.; Kusch-Brandt, S. Driving factors of e-waste recycling rate in 30 European countries: New evidence using a panel quantile regression of the EKC hypothesis coupled with the STIRPAT model. Environ. Dev. Sustain. 2023, 25, 7533–7560. [Google Scholar] [CrossRef]
- ISTAT. I.Stat-Datawarehouse Delle Statistiche Prodotte Dall’istat. Istituto Nazionale di Statistica. Available online: http://dati.istat.it (accessed on 10 December 2024).
- ISPRA. Catasto Rifiuti. Istituto Superiore per la Protezione e la Ricerca Ambientale. Available online: https://www.catasto-rifiuti.isprambiente.it (accessed on 11 December 2024).
- Beccarello, M.; Di Foggia, G. Efficient scale and scope of business models used in municipal solid waste management. Eur. J. Manag. Bus. Econ. 2023, 32, 492–508. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Mocholi-Arce, M.; Molinos-Senante, M.; Maziotis, A. Measuring Technical, Environmental and Eco-Efficiency in Municipal Solid Waste Management in Chile. Int. J. Sustain. Eng. 2022, 15, 71–85. [Google Scholar] [CrossRef]
- Llanquileo-Melgarejo, P.; Molinos-Senante, M.; Romano, G.; Carosi, L. Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile. Sustainability 2021, 13, 2022. [Google Scholar] [CrossRef]
- Banker, R.D. Maximum likelihood, consistency and data envelopment analysis: A statistical foundation. Manag. Sci. 1993, 39, 1265–1273. [Google Scholar] [CrossRef]
- Amore, M.D.; Murtinu, S. Tobit models in strategy research: Critical issues and applications. Glob. Strategy J. 2021, 11, 331–355. [Google Scholar] [CrossRef]
- Udupi, P.K. Practical Machine Learning: No Coding Required. 2023. Available online: https://www.amazon.it/Practical-Machine-Learning-No-coding-Software-ebook/dp/B0BVZ86Z3D (accessed on 20 March 2021).
- StataCorp. Stata: Release 16. Statistical Software; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Expósito, A.; Velasco, F. Municipal Solid-Waste Recycling Market and the European 2020 Horizon Strategy: A Regional Efficiency Analysis in Spain. J. Clean. Prod. 2018, 172, 938–948. [Google Scholar] [CrossRef]
- De Jaeger, S.; Eyckmans, J.; Rogge, N.; Van Puyenbroeck, T. Wasteful Waste-Reducing Policies? The Impact of Waste Reduction Policy Instruments on Collection and Processing Costs of Municipal Solid Waste. Waste Manag. 2011, 31, 1429–1440. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Kulshrestha, M.; Kulshreshtha, M. Efficiency Evaluation of Municipal Solid Waste Management Utilities in the Urban Cities of the State of Madhya Pradesh, India, Using Stochastic Frontier Analysis. Benchmarking 2012, 19, 340–357. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Data Mining, Inference and Prediction; Springer: New York, NY, USA, 2001. [Google Scholar]
- McDonald, J.F.; Moffit, R.A. The Uses of Tobit Analysis. Rev. Econ. Stat. 1980, 62, 318–321. [Google Scholar] [CrossRef]
Stage of Analysis | Variable Name (Abbreviation) | Description | Type | Unit | Mean | Std.dev. |
---|---|---|---|---|---|---|
I | pcSW | per capita sorted waste | output (good) | kg/inhabitant/year | 318.79 | 129.10 |
pcRW | per capita residual waste | output (bad) | kg/inhabitant/year | 148.05 | 107.63 | |
pcTWC | per capita total cost of MSW service | input | €/inhabitant/year | 171.01 | 88.21 | |
II | SR | sorting rate | exogenous | percentage/year | 68.63% | 15.43% |
pcTW | per capita total waste generated | exogenous | kg/inhabitant/year | 469.32 | 174.71 | |
POP | population | exogenous | Inhabitants/year | 8813.62 | 47,714.92 | |
AREA | municipality area | exogenous | km2 | 38.97 | 53.81 | |
DENS | population density | exogenous | inhabitants/km2 | 349.80 | 702.25 | |
HEIGHT | municipality height above sea level | exogenous | m | 425.85 | 426.82 | |
pcSWC | per capita sorted waste cost | exogenous | €/inhabitant/year | 68.38 | 37.41 | |
pcRWC | per capita residual waste cost | exogenous | €/inhabitant/year | 41.76 | 35.45 |
Main Statistics | Main Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Median | St.dev. | Max | Min | Mean | Median | St.dev. | Max | Min |
Group 1 | Group 2 | |||||||||
eco-efficiency | 0.100 | 0.109 | 0.031 | 0.132 | 0.000 | 0.188 | 0.191 | 0.029 | 0.233 | 0.132 |
SR | 32.66% | 34.51% | 14.12% | 56.56% | 0.00% | 54.99% | 57.87% | 11.66% | 72.45% | 12.63% |
POP | 23,661 | 1110 | 174,179 | 2,748,109 | 42 | 12,788 | 2459 | 55,472 | 1,354,196 | 37 |
AREA | 62.50 | 37.37 | 96.68 | 1287.36 | 1.75 | 47.26 | 24.66 | 63.08 | 547.04 | 0.67 |
DENS | 335.40 | 29.59 | 953.55 | 6794.65 | 0.80 | 415.36 | 87.87 | 1055.21 | 11,927.03 | 1.04 |
HEIGHT | 655.96 | 609.20 | 496.37 | 2386.46 | 2.29 | 509.22 | 370.23 | 466.18 | 2590.76 | 0.36 |
pcSWC | 64.09 | 58.91 | 46.23 | 224.92 | 0.00 | 70.87 | 68.05 | 39.54 | 372.56 | 0.00 |
pcRWC | 103.23 | 92.46 | 51.21 | 377.96 | 11.63 | 59.57 | 52.76 | 36.55 | 338.04 | 0.00 |
Group 3 | Group 4 | |||||||||
eco-efficiency | 0.275 | 0.276 | 0.023 | 0.314 | 0.233 | 0.351 | 0.349 | 0.023 | 0.393 | 0.314 |
SR | 67.49% | 70.01% | 8.62% | 78.33% | 20.64% | 75.13% | 77.10% | 7.02% | 84.92% | 19.35% |
POP | 7915 | 2884 | 16,099 | 250,369 | 59 | 6320 | 3104 | 11,103 | 161,748 | 86 |
AREA | 40.48 | 23.66 | 54.03 | 653.82 | 1.44 | 33.01 | 19.98 | 41.74 | 449.51 | 1.29 |
DENS | 299.24 | 121.88 | 542.54 | 6742.63 | 1.06 | 348.22 | 148.23 | 585.25 | 7687.15 | 1.56 |
HEIGHT | 426.42 | 306.11 | 398.39 | 2316.19 | 0.46 | 363.03 | 258.37 | 379.35 | 2427.30 | 0.55 |
pcSWC | 68.46 | 64.76 | 32.36 | 333.77 | 0.00 | 66.27 | 61.75 | 33.38 | 392.84 | 0.00 |
pcRWC | 39.64 | 35.16 | 25.95 | 306.88 | 0.00 | 32.00 | 26.47 | 24.65 | 253.55 | 0.00 |
Group 5 | Group 6 | |||||||||
eco-efficiency | 0.448 | 0.443 | 0.037 | 0.531 | 0.393 | 0.629 | 0.592 | 0.107 | 1.000 | 0.531 |
SR | 80.76% | 82.72% | 7.45% | 92.81% | 24.64% | 83.85% | 87.06% | 9.91% | 99.96% | 37.98% |
POP | 6244 | 3177 | 12,401 | 196,764 | 81 | 5262 | 3673 | 8758 | 129,340 | 170 |
AREA | 31.80 | 18.51 | 40.11 | 530.18 | 1.06 | 33.18 | 21.45 | 41.30 | 405.16 | 1.83 |
DENS | 357.55 | 157.45 | 520.82 | 3530.07 | 4.80 | 330.79 | 159.01 | 451.06 | 2512.13 | 5.82 |
HEIGHT | 365.85 | 238.56 | 405.90 | 2361.12 | 0.56 | 412.91 | 229.49 | 493.88 | 2494.12 | 1.53 |
pcSWC | 69.41 | 62.37 | 37.25 | 406.33 | 0.00 | 68.68 | 52.92 | 56.68 | 422.12 | 0.00 |
pcRWC | 27.33 | 20.00 | 27.96 | 539.62 | 0.00 | 25.91 | 18.13 | 31.82 | 371.93 | 1.94 |
Parameter | Quantiles | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
q = 0.05 | q = 0.25 | q = 0.5 | q = 0.75 | q = 0.95 | ||||||
intercept | −0.726 (0.000) [−0.740; −0.711] | −0.736 (0.000) [−0.755; −0.717] | −0.436 (0.000) [−0.454; −0.419] | −0.451 (0.000) [−470; −0.433] | −0.142 (0.000) [−0.160; −0.125] | −0.176 (0.000) [−0.200; −0.152] | 0.293 (0.000) [0.261; 0.324] | 0.256 (0.000) [0.212; 0.299] | 1.173 (0.000) [1.092; 1.253] | 1.163 (0.000) [1.054; 1.271] |
SR | 0.969 (0.000) [0.921; 1.018] | 0.967 (0.000) [0.917; 1.017] | 0.832 (0.000) [0.791; 0.872] | 0.831 (0.000) [0.794; 0.869] | 0.767 (0.000) [0.733; 0.801] | 0.768 (0.000) [0.733; 0.802] | 0.723 (0.000) [0.683; 0.764] | 0.729 (0.000) [0.688; 0.769] | 0.755 (0.000) [0.702; 0.808] | 0.754 (0.000) [0.700; 0.809] |
pcTW | −0.182 (0.000) [−0.229; −0.135] | −0.176 (0.000) [−0.223; −0.129] | −0.026 (0.117) [−0.058; 0.006] | −0.025 (0.092) [−0.054; 0.004] | 0.030 (0.025) [0.004; 0.056] | 0.036 (0.006) [0.010; 0.062] | 0.070 (0.007) [0.019; 0.121] | 0.080 (0.002) [0.030; 0.129] | 0.315 (0.000) [0.221; 0.409] | 0.321 (0.000) [0.221; 0.421] |
pcSWC | −0.009 (0.502) [−0.036; 0.018] | −0.010 (0.477) [−0.037; 0.017] | −0.077 (0.000) [−0.100; −0.053] | −0.078 (0.000) [−0.101; −0.056] | −0.097 (0.000) [−0.123; −0.072] | −0.098 (0.000) [−0.125; −0.072] | −0.095 (0.000) [−0.134; −0.056] | −0.100 (0.000) [−0.140; −0.060] | −0.197 (0.000) [−0.256; −0.138] | −0.194 (0.000) [−0.256; −0.132] |
pcRWC | 0.037 (0.001) [0.015; 0.060] | 0.036 (0.003) [0.012; 0.060] | −0.001 (0.939) [−0.030; 0.028] | −0.002 (0.876) [−0.030; 0.026] | −0.023 (0.135) [−0.052; 0.007] | −0.028 (0.066) [−0.057; 0.002] | −0.045 (0.022) [−0.084; −0.006] | −0.050 (0.018) [−0.092; −0.009] | −0.125 (0.001) [−0.199; −0.052] | −0.126 (0.001) [−0.200; −0.052] |
POP | −0.032 (0.193) [−0.079; 0.016] | −0.124 (0.060) [−0.254; 0.005] | −0.072 (0.146) [−0.170; 0.025] | −0.325 (0.000) [−0.440; −0.210] | −0.017 (0.659) [−0.092; 0.058] | −0.347 (0.002) [−0.565; −0.130] | 0.011 (0.662) [−0.038; 0.059] | −0.227 (0.238) [−0.604; 0.150] | 0.007 (0.831) [−0.056; 0.070] | −0.286 (0.246) [−0.769; 0.197] |
AREA | 0.003 (0.741) [−0.015; 0.021] | 0.014 (0.135) [−0.004; 0.032] | −0.012 (0.166) [−0.029; 0.005] | 0.008 (0.399) [−0.011; 0.028] | −0.035 (0.001) [−0.055; −0.014] | −0.013 (0.319) [−0.040; 0.013] | −0.055 (0.000) [−0.084; −0.026] | −0.039 (0.054) [−0.079; 0.001] | −0.078 (0.094) [−0.170; 0.013] | −0.043 (0.389) [−0.142; 0.055] |
DENS | −0.012 (0.226) [−0.031; 0.007] | −0.020 (0.404) [−0.068; 0.027] | −0.021 (0.018) [−0.039; −0.004] | 0.001 (0.947) [−0.034; 0.037] | −0.039 (0.000) [−0.056; −0.023] | −0.034 (0.203) [−0.086; 0.018] | −0.070 (0.000) [−0.095; −0.045] | −0.100 (0.039) [−0.195; −0.005] | −0.068 (0.017) [−0.125; −0.012] | −0.024 (0.827) [−0.243; 0.194] |
HEIGHT | 0.007 (0.354) [−0.001; 0.021] | −0.011 (0.369) [−0.037; 0.014] | 0.024 (0.013) [0.005; 0.043] | 0.000 (0.970) [−0.021; 0.022] | 0.042 (0.001) [0.016; 0.067] | −0.003 (0.812) [−0.032; 0.025] | 0.066 (0.000) [0.030; 0.103] | 0.015 (0.557) [−0.034; 0.064] | 0.202 (0.000) [0.111; 1.253] | 0.184 (0.007) [0.051; 0.317] |
POP×DENS | 0.005 (0.450) [−0.008; 0.019] | 0.015 (0.213) [−0.008; 0.038] | 0.019 (0.274) [−0.015; 0.052] | 0.017 (0.397) [−0.022; 0.056] | 0.035 (0.339) [−0.036; 0.106] | |||||
POP×AREA | 0.001 (0.832) [−0.011; 0.014] | 0.004 (0.811) [−0.032; 0.041] | 0.004 (0.903) [−0.059; 0.067] | 0.002 (0.960) [−0.083; 0.088] | 0.001 (0.981) [−0.103; 0.106] | |||||
HEIGHT×POP | −0.094 (0.236) [−0.251; 0.062] | −0.219 (0.001) [−0.351; −0.087] | −0.247 (0.008) [−0.428; −0.065] | −0.160 (0.252) [−0.434; 0.114] | −0.202 (0.301) [−0.585; 0.180] | |||||
HEIGHT×DENS | −0.023 (0.470) [−0.084; 0.039] | 0.021 (0.433) [−0.031; 0.073] | −0.011 (0.748) [−0.079; 0.057] | −0.062 (0.303) [−0.181; 0.056] | 0.058 (0.693) [−0.230; 0.346] | |||||
HEIGHT×AREA | −0.008 (0.277) [−0.023; 0.007] | 0.004 (0.704) [−0.017; 0.025] | −0.002 (0.851) [−0.028; 0.023] | −0.005 (0.815) [−0.043; 0.034] | 0.007 (0.893) [−0.099; 0.114] | |||||
Pseudo R2 | 0.540 | 0.541 | 0.477 | 0.481 | 0.409 | 0.412 | 0.335 | 0.336 | 0.257 | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
lo Storto, C. Evaluating the Eco-Efficiency of Municipal Solid Waste Management: Determinants, Paradoxes, and Trade-Offs. Urban Sci. 2025, 9, 395. https://doi.org/10.3390/urbansci9100395
lo Storto C. Evaluating the Eco-Efficiency of Municipal Solid Waste Management: Determinants, Paradoxes, and Trade-Offs. Urban Science. 2025; 9(10):395. https://doi.org/10.3390/urbansci9100395
Chicago/Turabian Stylelo Storto, Corrado. 2025. "Evaluating the Eco-Efficiency of Municipal Solid Waste Management: Determinants, Paradoxes, and Trade-Offs" Urban Science 9, no. 10: 395. https://doi.org/10.3390/urbansci9100395
APA Stylelo Storto, C. (2025). Evaluating the Eco-Efficiency of Municipal Solid Waste Management: Determinants, Paradoxes, and Trade-Offs. Urban Science, 9(10), 395. https://doi.org/10.3390/urbansci9100395