Comprehensive Assessment of Flood Risk and Vulnerability for Essential Facilities: Iowa Case Study
Abstract
:1. Introduction
2. Methodology
2.1. Case Study
2.2. Data Collection
2.3. Vulnerability of Essential Facilities to Flooding
2.3.1. Flood Exposure
2.3.2. Flood Depth Analysis
2.3.3. Functional Analysis of Facilities in Flooded Areas
2.3.4. Estimation of Restoration Time for Affected Facilities
2.3.5. Damage Analysis of Facilities in Flood-Prone Areas
3. Results and Discussion
3.1. Statewide Flood Exposure Analysis
3.2. County-Level Flood Vulnerability Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Thies, S.; Avner, P.; Rentschler, J. Flood impacts on urban transit and accessibility—A case study of Kinshasa. Transp. Res. Part D Transp. Environ. 2021, 96, 102889. [Google Scholar] [CrossRef]
- Cikmaz, B.A.; Yildirim, E.; Demir, I. Flood susceptibility mapping using fuzzy analytical hierarchy process for Cedar Rapids, Iowa. Int. J. River Basin Manag. 2023, 1–13. [Google Scholar] [CrossRef]
- Afreen, S. Hydrologic-Hydrodynamic Modeling for Flood Analysis & Prediction. Master’s Thesis, North Carolina Agricultural and Technical State University, Greensboro, NC, USA, 2018. Available online: https://www.proquest.com/docview/2050224915/abstract/440C99AEEB1E4CD1PQ/1 (accessed on 23 February 2023).
- Rose, M.P. When the Waters Came. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2022. Available online: https://dspace.mit.edu/handle/1721.1/147597 (accessed on 25 January 2024).
- Mobini, S.; Nilsson, E.; Persson, A.; Becker, P.; Larsson, R. Analysis of pluvial flood damage costs in residential buildings—A case study in Malmö. Int. J. Disaster Risk Reduct. 2021, 62, 102407. [Google Scholar] [CrossRef]
- Alharbi, R.S.; Nath, S.; Faizan, O.M.; Hasan, M.S.; Alam, S.; Khan, M.A.; Bakshi, S.; Sahana, M.; Saif, M.M. Assessment of Drought vulnerability through an integrated approach using AHP and Geoinformatics in the Kangsabati River Basin. J. King Saud Univ.-Sci. 2022, 34, 102332. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Wing, O.E.; Colven, E.; Gleason, C.J.; Bates, P.D.; Brown, C.M. Urbanizing the floodplain: Global changes of imperviousness in flood-prone areas. Environ. Res. Lett. 2022, 17, 104024. [Google Scholar] [CrossRef]
- Dong, S.; Esmalian, A.; Farahmand, H.; Mostafavi, A. An integrated physical-social analysis of disrupted access to critical facilities and community service-loss tolerance in urban flooding. Comput. Environ. Urban Syst. 2020, 80, 101443. [Google Scholar] [CrossRef]
- Berwari, A. The Simultaneous Evacuation of a Midwestern Community’s Multiple Healthcare Facilities during a Major Flood Event: A Study in Decision-Making and Implementation. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2012. Available online: https://www.proquest.com/docview/1268753275/abstract/FE48179B3DDB40A7PQ/1 (accessed on 23 February 2023).
- Alabbad, Y.; Demir, I. Geo-spatial analysis of built-environment exposure to flooding: Iowa case study. Discov. Water 2024, 4, 28. [Google Scholar] [CrossRef]
- World Health Organization. Floods in the WHO European Region: Health Effects and Their Prevention. 2013. Available online: https://iris.who.int/bitstream/handle/10665/108625/9789289000116eng.pdf?isAllowed=y&sequence=1 (accessed on 5 May 2023).
- Akhlaghi, V.E.; Campbell, A.M.; Demir, I. The Flood Mitigation Problem in a Road Network. arXiv 2023, arXiv:2302.07983. [Google Scholar]
- CISA. Critical Infrastructure Security and Resilience|Cybersecurity and Infrastructure Security Agency CISA. 2024. Available online: https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience (accessed on 29 August 2024).
- McAllister, T. Developing Guidelines and Standards for Disaster Resilience of the Built Environment: A Research Needs Assessment; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013; p. NIST TN 1795. [CrossRef]
- Oh, E.H. Impact Analysis of Natural Disasters on Critical Infrastructure, Associated Industries, and Communities. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2010. Available online: https://www.proquest.com/docview/859003778/abstract/8F77ED015A4845FDPQ/1 (accessed on 8 January 2024).
- Gangwal, U.; Siders, A.R.; Horney, J.; Michael, H.A.; Dong, S. Critical facility accessibility and road criticality assessment considering flood-induced partial failure. Sustain. Resilient Infrastruct. 2023, 8 (Suppl. S1), 337–355. [Google Scholar] [CrossRef]
- Baharuddin, K.A.; Abdull Wahab, S.F.; Nik Ab Rahman, N.H.; Nik Mohamad, N.A.; Tuan Kamauzaman, T.H.; Md Noh, A.Y.; Abdul Majod, M.R. The Record-Setting Flood of 2014 in Kelantan: Challenges and Recommendations from an Emergency Medicine Perspective and Why the Medical Campus Stood Dry. Malays. J. Med. Sci. MJMS 2015, 22, 1–7. [Google Scholar]
- Sirbaugh, P.E.; Bradley, R.N.; Macias, C.G.; Endom, E.E. The Houston flood of 2001: The Texas Medical Center and lessons learned. Clin. Pediatr. Emerg. Med. 2002, 3, 275–283. [Google Scholar] [CrossRef]
- Mount, J.; Alabbad, Y.; Demir, I. Towards an integrated and realtime wayfinding framework for flood events. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities, Chicago, IL, USA, 5–8 November 2019; pp. 33–36. [Google Scholar]
- Thieken, A.H.; Bessel, T.; Kienzler, S.; Kreibich, H.; Müller, M.; Pisi, S.; Schröter, K. The flood of June 2013 in Germany: How much do we know about its impacts? Nat. Hazards Earth Syst. Sci. 2016, 16, 1519–1540. [Google Scholar] [CrossRef]
- Otto, J. Des Moines Residents and Officials Working on Watershed Approach. Iowa Water Center. 2019. Available online: https://www.iowawatercenter.org/tag/outreach/ (accessed on 5 January 2024).
- Cikmaz, A.B.; Mount, J.; Demir, I. Evaluating the Flood Vulnerability of Urban Areas in Polk County, Iowa using Social-Ecological-Technological Framework. EarthArxiv 2024, 7375. [Google Scholar] [CrossRef]
- Achour, N.; Miyajima, M.; Pascale, F.; Price AD, F. Hospital resilience to natural hazards: Classification and performance of utilities. Disaster Prev. Manag. 2014, 23, 40–52. [Google Scholar] [CrossRef]
- Ramm, M. Freeport Couple Among Many Forced from Their Homes Due to Flooding. The Gazette. 2016. Available online: https://www.thegazette.com/news/freeport-couple-among-many-forced-from-their-homes-due-to-flooding/ (accessed on 10 May 2023).
- Alabbad, Y.; Mount, J.; Campbell, A.M.; Demir, I. A web-based decision support framework for optimizing road network accessibility and emergency facility allocation during flooding. Urban Inform. 2024, 3, 10. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Lin, N.; Wilby, R.L. Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City. J. Hydrol. 2017, 555, 648–658. [Google Scholar] [CrossRef]
- Tanir, T.; Yildirim, E.; Ferreira, C.M.; Demir, I. Social vulnerability and climate risk assessment for agricultural communities in the United States. Sci. Total Environ. 2024, 908, 168346. [Google Scholar] [CrossRef]
- Duran, E.; Alabbad, Y.; Mount, J.; Yildirim, E.; Demir, I. Comprehensive Analysis of Riverine Flood Impact on Bridges: Iowa Case Study. EarthArxiv 2023, 6434. [Google Scholar] [CrossRef]
- Coles, D.; Yu, D.; Wilby, R.L.; Green, D.; Herring, Z. Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK. J. Hydrol. 2017, 546, 419–436. [Google Scholar] [CrossRef]
- Pant, R.; Thacker, S.; Hall, J.W.; Alderson, D.; Barr, S. Critical infrastructure impact assessment due to flood exposure. J. Flood Risk Manag. 2016, 11, 22–33. [Google Scholar] [CrossRef]
- Sun, P.; Entress, R.; Tyler, J.; Sadiq, A.-A.; Noonan, D. Critical public infrastructure underwater: The flood hazard profile of Florida hospitals. Nat. Hazards 2023, 117, 473–489. [Google Scholar] [CrossRef]
- Yildirim, E.; Alabbad, Y.; Demir, I. Non-structural flood mitigation optimization at community scale: Middle Cedar Case Study. J. Environ. Manag. 2023, 346, 119025. [Google Scholar] [CrossRef] [PubMed]
- Cikmaz, A.B.; Alabbad, Y.; Yildirim, E.; Demir, I. A Comprehensive Flood Risk Assessment for Railroad Network: Case Study for Iowa. EarthArxiv 2024, 6472. [Google Scholar] [CrossRef]
- Yeşilköy, S.; Baydaroğlu, Ö.; Singh, N.; Sermet, Y.; Demir, I. A contemporary systematic review of Cyberinfrastructure Systems and Applications for Flood and Drought Data Analytics and Communication. EarthArxiv 2023, 5814. [Google Scholar] [CrossRef]
- Sermet, Y.; Demir, I. GeospatialVR: A web-based virtual reality framework for collaborative environmental simulations. Comput. Geosci. 2022, 159, 105010. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, Z.; Demiray, B.Z.; Sit, M.; Demir, I. MA-SARNet: A one-shot nowcasting framework for SAR image prediction with physical driving forces. ISPRS J. Photogramm. Remote Sens. 2023, 205, 176–190. [Google Scholar] [CrossRef]
- Holmes, R.R.; Koenig, T.A.; Karstensen, K.A. Flooding in the United States Midwest, 2008; U.S. Geological Survey: Reston, VA, USA, 2010.
- Brummel, R.; Pyzdrowski, J. On the Path to Community Flood Resilience for the Upper Iowa Watershed: Documenting 2016 Flood Experiences in Freeport, Iowa. 2019. Available online: https://iowawatershedapproach.org/wp-content/uploads/2021/07/Report___Community_Flood_Resilience_in_Freeport.pdf (accessed on 11 January 2024).
- Hazus Inventory National Database Fact Sheet. 2023. Available online: https://www.fema.gov/sites/default/files/documents/fema_hazus-inventory-national-database-factsheet.pdf (accessed on 20 May 2023).
- Hazus Flood Technical Manual Hazus 5.1. 2022. Available online: https://www.fema.gov/sites/default/files/documents/fema_hazus-flood-model-technical-manual-5-1.pdf (accessed on 20 May 2023).
- Fire Stations. Hifld-Geoplatform.opendata.arcgis.com. 2023. Available online: https://hifld-geoplatform.opendata.arcgis.com/datasets/fire-stations/explore (accessed on 20 May 2023).
- Emergency Medical Service (EMS) Stations. Hifld-Geoplatform.opendata.arcgis.com. 2023. Available online: https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::emergency-medical-service-ems-stations/explore (accessed on 20 May 2023).
- The Homeland Infrastructure Foundation-Level Data (HIFLD). Power Plants. 2023. Available online: https://hifld-geoplatform.opendata.arcgis.com/datasets/power-plants-2/explore (accessed on 1 June 2023).
- ArcGIS Business Analyst—Esri Demographics Regional Data|Documentation. 2019. Available online: https://doc.arcgis.com/en/esri-demographics/latest/regional-data/business.htm (accessed on 20 January 2019).
- FEMA Flood Map Service Center|Hazus. Msc.fema.gov. 2023. Available online: https://msc.fema.gov/portal/resources/hazus (accessed on 10 January 2024).
- USACE. NSI Technical References. 2022. Available online: https://www.hec.usace.army.mil/confluence/nsi/technicalreferences/latest/technical-documentation (accessed on 1 June 2023).
- Iowa Flood Center. 2023. Available online: https://iowafloodcenter.org/ (accessed on 1 April 2023).
- Gilles, D.; Young, N.; Schroeder, H.; Piotrowski, J.; Chang, Y.J. Inundation mapping initiatives of the Iowa Flood Center: Statewide coverage and detailed urban flooding analysis. Water 2012, 4, 85–106. [Google Scholar] [CrossRef]
- Hazus Inventory Technical Manual Hazus 6.0. 2022. Available online: https://www.fema.gov/sites/default/files/documents/fema_hazus-6-inventory-technical-manual.pdf (accessed on 1 May 2023).
- Yildirim, E.; Just, C.; Demir, I. Flood risk assessment and quantification at the community and property level in the State of Iowa. Int. J. Disaster Risk Reduct. 2022, 77, 103106. [Google Scholar] [CrossRef]
- Alabbad, Y.; Demir, I. Comprehensive flood vulnerability analysis in urban communities: Iowa case study. Int. J. Disaster Risk Reduct. 2022, 74, 102955. [Google Scholar] [CrossRef]
- Ware, C. Rising Above Iowa’s 2008 Flood. HEALTH PROGRESS. 2013. Available online: https://www.chausa.org/docs/default-source/health-progress/rising-above-iowas-2008-flood.pdf?sfvrsn=2 (accessed on 5 January 2024).
- Choi, J. Dynamic Strain Capacity Analysis and Planning for Critical Infrastructure to Improve Community Resilience to Disasters. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2018. Available online: https://www.proquest.com/docview/2271802852/abstract/A8DBC59FE90C4F34PQ/1 (accessed on 20 June 2023).
- Yusoff, N.A.; Shafii, H.; Omar, R. The impact of floods in hospital and mitigation measures: A literature review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012026. [Google Scholar] [CrossRef]
Facility Type | Examples | Data Source | Year |
---|---|---|---|
Medical Facilities | Hospitals, clinics | ArcGIS Business Analyst | 2019 |
EMS Stations | EMS stations | HIFLD Database | 2023 |
Fire Stations | Fire stations | HIFLD Database | 2023 |
Police Stations | Police facilities | ArcGIS Business Analyst | 2019 |
Schools | Schools, colleges | ArcGIS Business Analyst | 2019 |
Shelters | Churches, motels | ArcGIS Business Analyst | 2019 |
Potable Water Facilities | Water treatment | ArcGIS Business Analyst | 2019 |
Wastewater Facilities | Treatment plants | HAZUS Inventory National Database | 2023 |
Power Plants | Power generation | HIFLD Database | 2023 |
Building Data | Structural details | National Structure Inventory | 2022 |
Flood Maps | 100 y and 500 y extents | Iowa Flood Center | 2023 |
Raster Maps | Flood depths | Iowa Flood Center | 2023 |
Medical Care Facilities | ||||||
---|---|---|---|---|---|---|
HAZUS Label | Occupancy Class | Default Building Type | Basement | First-Floor Height (ft) | No. of Stories | Functionality Depth (ft) |
MDFLT | Default Hospital | Concrete | Yes | 3 | Mid | 0.5 |
EFHS | Small Hospital | Concrete | Yes | 3 | Low | 0.5 |
EFHM | Medium Hospital | Concrete | Yes | 3 | Mid | 0.5 |
EFHL | Large Hospital | Concrete | Yes | 3 | Mid | 0.5 |
EFMC | Medical Center | Concrete | Yes | 3 | Low | 0.5 |
HAZUS Label | Description | Minimum Flood Depth (ft) | Maximum Flood Depth (ft) | Maximum Days to Restoration |
---|---|---|---|---|
EFMC | Medical Clinics and Labs | −4 | 0 | 360 |
EFMC | Medical Clinics and Labs | 0 | 4 | 480 |
EFMC | Medical Clinics and Labs | 4 | 8 | 630 |
EFMC | Medical Clinics and Labs | 8 | 12 | 720 |
EFMC | Medical Clinics and Labs | 12 | 25 | 900 |
County Name | Impacted Facilities | Yes | No | |||
---|---|---|---|---|---|---|
100 y | 500 y | 100 y | 500 y | 100 y | 500 y | |
Pottawattamie | 52 | 105 | 0 | 3 | 52 | 102 |
Polk | 17 | 34 | 0 | 2 | 17 | 32 |
Johnson | 2 | 11 | 0 | 2 | 2 | 9 |
Linn | 4 | 17 | 0 | 1 | 4 | 16 |
Story | 4 | 11 | 3 | 2 | 1 | 9 |
Harrison | 8 | 15 | 0 | 1 | 8 | 14 |
Total | 87 | 193 | 3 | 11 | 84 | 182 |
Pottawattamie | Polk | Linn | Harrison | Story | Johnson | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flood Extent | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y |
Medical | USD 677 k | USD 3.5 M | - | USD 2.1 M | - | USD 360 k | - | - | - | USD 96 k | - | USD 47 k | USD 677 k | USD 6.2 M |
EMS | - | - | - | USD 136 k | - | - | - | - | - | - | - | - | - | USD 136 k |
Fire | USD 278 k | USD 976 k | USD 1.6 M | USD 1.1 M | - | - | USD 470 k | USD 494 k | - | - | - | - | USD 2.4 M | USD 2.5 M |
Police | USD 371 k | USD 1.5 M | - | - | - | USD 642 k | USD 61 k | USD 195 k | - | - | - | - | USD 433 k | USD 2.4 M |
School | USD 6.9 M | USD 25.1 M | USD 1.3 M | USD 2.2 M | USD 1.2 M | USD 6.1 M | - | - | - | - | - | USD 946 k | USD 9.4 M | USD 34.4 M |
Shelter | USD 19.4 M | USD 44.3 M | USD 5.5 M | USD 9.8 M | USD 397 k | USD 2.4 M | USD 866 k | USD 2 M | USD 42 k | USD 1 M | USD 48 k | USD 2.7 M | USD 26.3 M | USD 62.2 M |
Wastewater | - | USD 24 k | - | - | - | USD 24 k | - | USD 48 k | USD 80 k | USD 104 k | - | - | USD 80 k | USD 200 k |
Potable Water | - | - | - | USD 194 k | - | - | - | - | - | - | - | - | - | USD 194 k |
Power | - | - | - | - | USD 15 k | USD 15 k | - | - | - | - | USD 75 k | USD 110 k | USD 90 k | USD 125 k |
Total | USD 27.7 M | USD 75.5 M | USD 8.4 M | USD 15.6 M | USD 1.6 M | USD 9.5 M | USD 1.4 M | USD 2.7 M | USD 122 k | USD 1.2 M | USD 123 k | USD 3.8 M | USD 39.3 M | USD 108.3 M |
Pottawattamie | Polk | Linn | Harrison | Story | Johnson | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flood Extent | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y | 100 y | 500 y |
Medical | USD 2.6 M | USD 15.1 M | - | USD 12.4 M | - | USD 589 k | - | - | - | USD 369 k | - | USD 178 k | USD 2.6 M | USD 28.6 M |
EMS | - | - | - | USD 1 M | - | - | - | - | - | - | - | - | - | USD 1 M |
Fire | USD 1.4 M | USD 2.7 M | USD 3.5 M | USD 3.7 M | - | - | USD 646 k | USD 2.2 M | - | - | - | - | USD 5.5 M | USD 8.6 M |
Police | USD 1.9 M | USD 10.1 M | - | - | - | USD 4.4 M | USD 100 k | USD 273 k | - | - | - | - | USD 2 M | USD 14.9 M |
School | USD 36.5 M | USD 110.5 M | USD 8 M | USD 9.6 M | USD 1.9 M | USD 29.3 M | - | - | - | - | - | USD 7.2 M | USD 46.5 M | USD 156.6 M |
Shelter | USD 58.3 M | USD 132.6 M | USD 19 M | USD 30.9 M | USD 2 M | USD 16.1 M | USD 1.6 M | USD 2.2 M | USD 160 k | USD 3.6 M | USD 30 k | USD 10.4 M | USD 81.2 M | USD 195.8 M |
Wastewater | - | USD 24 k | - | - | - | USD 24 k | - | USD 48 k | USD 80 k | USD 104 k | - | - | USD 80 k | USD 200 k |
Potable water | - | - | - | USD 194 k | - | - | - | - | - | - | - | - | - | USD 194 k |
Power | - | - | - | - | USD 15 k | USD 15 k | - | - | - | - | USD 75 k | USD 110 k | USD 90 k | USD 125 k |
Total | USD 100.7 M | USD 271 M | USD 30.6 M | USD 57.7 M | USD 4 M | USD 50.5 M | USD 2.4 M | USD 4.7 M | USD 240 k | USD 4.1 M | USD 105 k | USD 17.9 M | USD 138 M | USD 406 M |
Damage | Shelter | School | Medical | Fire | Police | Potable Water | EMS | Waste-Water | Power | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | ||
Pottawattamie | 1–20% | 32 | 58 | 9 | 14 | 1 | 3 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | - | - |
21–40% | 5 | 10 | - | 4 | - | 1 | - | 2 | - | 1 | - | - | - | - | - | - | - | - | |
41–60% | 2 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Polk | 1–20% | 9 | 19 | 3 | 4 | - | 2 | - | 1 | - | - | - | 1 | - | 1 | - | - | - | - |
21–40% | 4 | 3 | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | - | - | - | |
41–60% | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | |
Harrison | 1–20% | 4 | 2 | - | - | - | - | 2 | 2 | 1 | - | - | - | - | - | - | - | - | - |
21–40% | 2 | 5 | - | - | - | - | - | 1 | - | 1 | - | - | - | - | - | 2 | - | - | |
41–60% | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
81–90% | - | - | - | - | - | - | 1 | 1 | - | - | - | - | - | - | - | - | - | - | |
Linn | 1–20% | 2 | 8 | - | 3 | - | 1 | - | - | - | 1 | - | - | - | - | - | - | 1 | 1 |
21–40% | - | - | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | |
41–60% | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Johnson | 1–20% | 1 | 5 | - | 1 | - | 1 | - | - | - | - | - | - | - | - | - | - | 1 | 2 |
21–40% | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Story | 1–20% | 1 | 7 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
21–40% | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | 1 | 2 | - | - |
Damage | Shelter | School | Medical | Fire | Police | Potable Water | EMS | Waste-Water | Power | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | ||
Pottawattamie | 1–20% | 5 | 2 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21–40% | 8 | 12 | 4 | 4 | - | - | 1 | - | 1 | - | - | - | - | - | - | 1 | - | - | |
41–60% | 14 | 19 | 1 | 3 | - | 2 | - | 1 | - | - | - | - | - | - | - | - | - | - | |
61–80% | 5 | 7 | 3 | 8 | 1 | 1 | - | 1 | - | 1 | - | - | - | - | - | - | - | - | |
81–100% | 7 | 36 | - | 3 | - | 1 | 1 | 1 | - | 1 | - | - | - | - | - | - | - | - | |
Polk | 1–20% | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21–40% | 1 | 2 | - | 1 | - | - | - | - | - | - | - | 2 | - | - | - | - | - | - | |
41–60% | 3 | 2 | 1 | 2 | - | 1 | - | 1 | - | - | - | - | - | 1 | - | - | - | - | |
61–80% | 1 | 4 | 2 | 2 | - | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | |
81–100% | 8 | 12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Harrison | 1–20% | 3 | - | - | - | - | - | 2 | - | 1 | - | - | - | - | - | - | - | - | - |
21–40% | - | 1 | - | - | - | - | - | 2 | - | - | - | - | - | - | - | 2 | - | - | |
41–60% | 2 | 3 | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | |
61–80% | 2 | ||||||||||||||||||
81–100% | 2 | 2 | - | - | - | - | 1 | 1 | - | - | - | - | - | - | - | - | - | - | |
Linn | 1–20% | - | 1 | - | 1 | - | 1 | - | - | - | - | - | - | - | - | - | - | 1 | 1 |
21–40% | 1 | - | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | |
41–60% | 1 | 3 | - | 1 | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | |
61–80% | - | 2 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
81–100% | - | 2 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Johnson | 1–20% | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 2 |
21–40% | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
41–60% | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | |
81–100% | - | 1 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Story | 1–20% | - | 5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21–40% | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 2 | - | - | |
41–60% | - | 1 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | |
81–100% | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grant, C.A.; Alabbad, Y.; Yildirim, E.; Demir, I. Comprehensive Assessment of Flood Risk and Vulnerability for Essential Facilities: Iowa Case Study. Urban Sci. 2024, 8, 145. https://doi.org/10.3390/urbansci8030145
Grant CA, Alabbad Y, Yildirim E, Demir I. Comprehensive Assessment of Flood Risk and Vulnerability for Essential Facilities: Iowa Case Study. Urban Science. 2024; 8(3):145. https://doi.org/10.3390/urbansci8030145
Chicago/Turabian StyleGrant, Cori Ann, Yazeed Alabbad, Enes Yildirim, and Ibrahim Demir. 2024. "Comprehensive Assessment of Flood Risk and Vulnerability for Essential Facilities: Iowa Case Study" Urban Science 8, no. 3: 145. https://doi.org/10.3390/urbansci8030145
APA StyleGrant, C. A., Alabbad, Y., Yildirim, E., & Demir, I. (2024). Comprehensive Assessment of Flood Risk and Vulnerability for Essential Facilities: Iowa Case Study. Urban Science, 8(3), 145. https://doi.org/10.3390/urbansci8030145