Weather Forecasting Using Radial Basis Function Neural Network in Warangal, India
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Temperature Dataset
3.2. Humidity Dataset
3.3. Data Pre-Processing
3.4. Radial Basis Function Neural Network (RBFNN)
Algorithm 1 RBFNN training algorithm. |
Step 1: Read input and output features of temperature dataset ▹ X = {Temp(T-1), Temp(T-24), Humd(T-1), Humd(T-24), season} and Tempt(T), In case of humidity forecasting output is Humd(T) instead of Temp(T) |
Step 2: Initialize number of centriods (neurons) in hidden layer, weights , bias parameter , learning rate and tol = 1 |
Step 3: Randomly pick few samples from training dataset and assign as mean vector () for each neuron/centriod. |
while tol ≥ 0.001 do ▹ Unsupervised learning between input and hidden layer of RBFNN |
Step 4: Calculate the euclidean distance (ED) between each sample and mean vector using Equation (5)
|
Step 5: Assign the sample which has minimum ED to that particular centroid and update mean value () as an average of all assigned samples to that particular centroid. |
Step 6: Calculate tolerance (tol) as the maximum difference between old and new mean values among all centriods. |
end while |
Step 7: Calculate the standard deviation () using Equation (6)
|
Step 8: Calculate the output of each hidden neuron (h) using Equation (7)
|
while do ▹ Supervised learning between output and hidden layer of RBFNN |
Step 9: Calculate output of the RBFNN output layer using Equation (8)
|
Step 11: Find as maximum change among and |
end while |
Step 12: Store model in terms of model parameters , , and , and architecture |
4. Results
Optimal RBFNN Model to Forecast the Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Weights between output and latent space | |
Bias parameters at output layer | |
Output of output layer | |
Net input to output layer | |
Output of hidden layer | |
Weights connected to nth neuron in output layer | |
Change in weights connected to nth neuron in output layer | |
Change in bias connected to neurons in output layer | |
Temp(T-1) | One-hour-ahead temperature from the time of forecasting |
Temp(T-24) | One-day-ahead temperature from the time of forecasting |
Humd(T-1) | One-hour-ahead humidity from the time of forecasting |
Humd(T-24) | One-day-ahead humidity from the time of forecasting |
Temp(T) | Temperature at time ‘T’ |
Humd(T) | Humidity at time ‘T’ |
ED | Euclidean distance |
Mean vector at centroid | |
Standard deviation | |
RBFNN | Radial basis function neural network |
p | Width factor |
Mean vector at centroid ‘i’ | |
Mean vector at centroid ‘j’ | |
Learning rate | |
WX | Weather |
NWP | Numerical weather prediction |
Appendix A. Radial Basis Function Neural Network (RBFNN)
Temp(T-1) | Temp(T-24) | Humd(T-1) | Humd(T-24) | Season | Temp |
---|---|---|---|---|---|
0.2586 | 0.2586 | 0.8636 | 0.8636 | 0.5 | 0.2586 |
0.4827 | 0.4827 | 0.3863 | 0.3977 | 0.5 | 0.4827 |
0.5689 | 0.5689 | 0.2045 | 0.2272 | 0.5 | 0.5689 |
0.5172 | 0.5344 | 0.2727 | 0.3181 | 0.5 | 0.5172 |
0.3620 | 0.3620 | 0.6704 | 0.8295 | 0.5 | 0.3620 |
Appendix A.1. Unsupervised Learning between Input and Hidden Layers
- ED1 = = 0
- ED2 = = 0.7384
- ED1 = = 0.73855
- ED2 = = 0
- ED1 = = 1.0222
- ED2 = = 0.27746
- ED1 = = 0.88864
- ED2 = = 0.15102
- ED1 = = 0.24469
- ED2 = = 0.54434
- ED1 = = 0.11218
- ED2 = = 0.88093
- ED1 = = 0.65893
- ED2 = = 0.14276
- ED1 = = 0.93484
- ED2 = = 0.13515
- ED1 = = 0.8075
- ED2 = = 0.17566
- ED1 = = 1.8443
- ED2 = = 6.8224
Sample | Temp | ||
---|---|---|---|
1 | 0.9756 | 0.2773 | 0.2586 |
2 | 0.5113 | 0.9669 | 0.4827 |
3 | 0.2521 | 0.9762 | 0.5689 |
4 | 0.3609 | 0.9995 | 0.5176 |
5 | 0.9756 | 0.4634 | 0.3620 |
Appendix A.2. Supervised Learning between Hidden and OUTPUT Layer
- The output of the RBFNN output layer is calculated using Equation (8)
- The output of the RBFNN output layer is calculated using Equation (8)
- The output of the RBFNN output layer is calculated using Equation (8)
- The output of the RBFNN output layer is calculated using Equation (8)
- The output of the RBFNN output layer is calculated using Equation (8)
Appendix B. Prediction Using Trained RBFNN
- The output of each hidden neuron is calculated using centroids () and standard deviation () as shown below.
- The output of the output neuron is calculated using weights (), bias (), and output of hidden neurons as shown below.
References
- Abrego-Perez, A.L.; Pacheco-Carvajal, N.; Diaz-Jimenez, M.C. Forecasting Agricultural Financial Weather Risk Using PCA and SSA in an Index Insurance Model in Low-Income Economies. Appl. Sci. 2023, 13, 2425. [Google Scholar] [CrossRef]
- Shen, D.; Shi, W.F.; Tang, W.; Wang, Y.; Liao, J. The Agricultural Economic Value of Weather Forecasting in China. Sustainability 2022, 14, 17026. [Google Scholar] [CrossRef]
- Nyasulu, C.; Diattara, A.; Traore, A.; Deme, A.; Ba, C. Towards Resilient Agriculture to Hostile Climate Change in the Sahel Region: A Case Study of Machine Learning-Based Weather Prediction in Senegal. Agriculture 2022, 12, 1473. [Google Scholar] [CrossRef]
- Wang, D.; Cai, X. Irrigation scheduling—Role of weather forecasting and farmers’ behavior. J. Water Resour. Plan. Manag. 2009, 135, 364–372. [Google Scholar] [CrossRef]
- Ghate, V.P.; Miller, M.A.; DiPretore, L. Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Leu, J.S.; Su, K.W.; Chen, C.T. Ambient mesoscale weather forecasting system featuring mobile augmented reality. Multimed. Tools Appl. 2014, 72, 1585–1609. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Zhi, X.; Ji, Y. Multi-Model Ensemble Forecasts of Surface Air Temperatures in Henan Province Based on Machine Learning. Atmosphere 2023, 14, 520. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Ge, J.; Zhang, J.; Traore, S.; Fipps, G.; Luo, Y. Evaluation of Five Equations for Short-Term Reference Evapotranspiration Forecasting Using Public Temperature Forecasts for North China Plain. Water 2022, 14, 2888. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, D.; Jung, Y.; Ko, M. Application of Technology to Develop a Framework for Predicting Power Output of a PV System Based on a Spatial Interpolation Technique: A Case Study in South Korea. Energies 2022, 15, 8755. [Google Scholar] [CrossRef]
- Sigauke, C.; Chandiwana, E.; Bere, A. Spatio-Temporal Forecasting of Global Horizontal Irradiance Using Bayesian Inference. Appl. Sci. 2023, 13, 201. [Google Scholar] [CrossRef]
- Wang, S.; Dai, T.; Li, C.; Cheng, Y.; Huang, G.; Shi, G. Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar. Remote Sens. 2022, 14, 4990. [Google Scholar] [CrossRef]
- Jeon, H.J.; Choi, M.W.; Lee, O.J. Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network. Sensors 2022, 22, 7179. [Google Scholar] [CrossRef]
- Alkhayat, G.; Hasan, S.H.; Mehmood, R. SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting. Energies 2022, 15, 6659. [Google Scholar] [CrossRef]
- Tu, C.S.; Tsai, W.C.; Hong, C.M.; Lin, W.M. Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization. Energies 2022, 15, 6624. [Google Scholar] [CrossRef]
- Xin, J.; Bao, D.; Ma, Y.; Ma, Y.; Gong, C.; Qiao, S.; Jiang, Y.; Ren, X.; Pang, T.; Yan, P. Forecasting and Optimization of Wind Speed over the Gobi Grassland Wind Farm in Western Inner Mongolia. Atmosphere 2022, 13, 1943. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhi, X.; Wu, H.; Zhou, H.; Kong, D.; Zhu, S.; Zhang, Y.; Hao, C. Analyses on the Multimodel Wind Forecasts and Error Decompositions over North China. Atmosphere 2022, 13, 1652. [Google Scholar] [CrossRef]
- Rubin, Y.; Sohn, S.; Alpert, P. High-Resolution Humidity Observations Based on Commercial Microwave Links (CML) Data—Case of Tel Aviv Metropolitan Area. Remote Sens. 2023, 15, 345. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J.; Li, Z.; Shen, X.; Wen, J.; Wang, H.; Wu, C. A New Hybrid Framework for Error Correction and Uncertainty Analysis of Precipitation Forecasts with Combined Postprocessors. Water 2022, 14, 3072. [Google Scholar] [CrossRef]
- Fathi, M.; Haghi Kashani, M.; Jameii, S.M.; Mahdipour, E. Big data analytics in weather forecasting: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 1247–1275. [Google Scholar] [CrossRef]
- Chung, C.Y.C.; Kumar, V.R. Knowledge acquisition using a neural network for a weather forecasting knowledge-based system. Neural Comput. Appl. 1993, 1, 215–223. [Google Scholar] [CrossRef]
- Pandey, A.; Agrawal, C.; Agrawal, M. A hadoop based weather prediction model for classification of weather data. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, Tamil Nadu, India, 22–24 February 2017; IEEE: New York, NY, USA, 2017; pp. 1–5. [Google Scholar]
- Zhao, X.; Sun, Q.; Lin, X. Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting. Mathematics 2023, 11, 1330. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- de Mourgues, M.; Emde, C.; Mayer, B. Optimized Wavelength Sampling for Thermal Radiative Transfer in Numerical Weather Prediction Models. Atmosphere 2023, 14, 332. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Jiang, X.; Yang, L.; Xu, H.; Shi, Y.; Huo, Z. Grid-to-Point Deep-Learning Error Correction for the Surface Weather Forecasts of a Fine-Scale Numerical Weather Prediction System. Atmosphere 2023, 14, 145. [Google Scholar] [CrossRef]
- Holmstrom, M.; Liu, D.; Vo, C. Machine learning applied to weather forecasting. Meteorol. Appl. 2016, 10, 1–5. [Google Scholar]
- Abuella, M.; Chowdhury, B. Solar power probabilistic forecasting by using multiple linear regression analysis. In Proceedings of the SoutheastCon 2015, Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, P.; Irwin, D.; Shenoy, P. Predicting solar generation from weather forecasts using machine learning. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; IEEE: New York, NY, USA, 2011; pp. 528–533. [Google Scholar]
- Kuligowski, R.J.; Barros, A.P. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather Forecast. 1998, 13, 1194–1204. [Google Scholar] [CrossRef]
- Li, Y.; Lang, J.; Ji, L.; Zhong, J.; Wang, Z.; Guo, Y.; He, S. Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron. Asia-Pac. J. Atmos. Sci. 2021, 57, 533–546. [Google Scholar] [CrossRef]
- Tektaş, M. Weather forecasting using ANFIS and ARIMA models. Environ. Res. Eng. Manag. 2010, 51, 5–10. [Google Scholar]
- Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palmieri, F.; Liu, Y. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 2020, 24, 16453–16482. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Mahmood, H. Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network and Synthetic Weather Forecast. IEEE Access 2020, 8, 172524–172533. [Google Scholar] [CrossRef]
- Lee, C.C.; Chung, P.C.; Tsai, J.R.; Chang, C.I. Robust radial basis function neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1999, 29, 674–685. [Google Scholar]
- Tang, X.; Xu, B.; Xu, Z. Reactor Temperature Prediction Method Based on CPSO-RBF-BP Neural Network. Appl. Sci. 2023, 13, 3230. [Google Scholar] [CrossRef]
- Wang, W.; Jing, Z.; Zhao, S.; Lu, Z.; Xing, Z.; Guo, S. Intelligent Height Adjustment Method of Shearer Drum Based on Rough Set Significance Reduction and Fuzzy Rough Radial Basis Function Neural Network. Appl. Sci. 2023, 13, 2877. [Google Scholar] [CrossRef]
- Yang, P.; Wang, T.; Yang, H.; Meng, C.; Zhang, H.; Cheng, L. The Performance of Electronic Current Transformer Fault Diagnosis Model: Using an Improved Whale Optimization Algorithm and RBF Neural Network. Electronics 2023, 12, 1066. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Edudodla, B.R.; Salkuti, S.R. Zero-Crossing Point Detection of Sinusoidal Signal in Presence of Noise and Harmonics Using Deep Neural Networks. Algorithms 2021, 14, 329. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Deshmukh, R. Electric power load forecasting on a 33/11 kV substation using artificial neural networks. SN Appl. Sci. 2020, 2, 855. [Google Scholar] [CrossRef] [Green Version]
- Tsoulos, I.G.; Charilogis, V. Locating the Parameters of RBF Networks Using a Hybrid Particle Swarm Optimization Method. Algorithms 2023, 16, 71. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Y.; Huang, H.; Huang, Q.; Gu, W.; Liang, H. Live Pig-Weight Learning and Prediction Method Based on a Multilayer RBF Network. Agriculture 2023, 13, 253. [Google Scholar] [CrossRef]
- Alzaeemi, S.A.; Noman, E.A.; Al-shaibani, M.M.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Almoheer, R.; Seif, M.; Tay, K.G.; Zin, N.M.; El Enshasy, H.A. Improvement of L-asparaginase, an Anticancer Agent of Aspergillus arenarioides EAN603 in Submerged Fermentation Using a Radial Basis Function Neural Network with a Specific Genetic Algorithm (RBFNN-GA). Fermentation 2023, 9, 200. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Rakesh Chandra, D.; Salkuti, S.R. Short Term Active Power Load Forecasting Using Machine Learning with Feature Selection. In Next Generation Smart Grids: Modeling, Control and Optimization; Springer: Berlin/Heidelberg, Germany, 2022; pp. 103–124. [Google Scholar]
- Venkataramana, V.; Pravallika, J.; Eslavath, R.; Srividya, S.; Surender Reddy, S. A Platform Independent Web-Application for Short-Term Electric Power Load Forecasting on a 33/11 kV Substation Using Regression Model. Adv. Electr. Electron. Eng. 2023, 20, 432–443. [Google Scholar]
- Veeramsetty, V.; Chandra, D.R.; Salkuti, S.R. Short-term electric power load forecasting using factor analysis and long short-term memory for smart cities. Int. J. Circuit Theory Appl. 2021, 49, 1678–1703. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Reddy, K.R.; Santhosh, M.; Mohnot, A.; Singal, G. Short-term electric power load forecasting using random forest and gated recurrent unit. Electr. Eng. 2022, 104, 307–329. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Chandra, D.R.; Grimaccia, F.; Mussetta, M. Short term electric power load forecasting using principal component analysis and recurrent neural networks. Forecasting 2022, 4, 149–164. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Mohnot, A.; Singal, G.; Salkuti, S.R. Short term active power load prediction on a 33/11 kv substation using regression models. Energies 2021, 14, 2981. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Sai Pavan Kumar, M.; Salkuti, S.R. Platform-Independent Web Application for Short-Term Electric Power Load Forecasting on 33/11 kV Substation Using Regression Tree. Computers 2022, 11, 119. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Hans, C. Elastic net regression modeling with the orthant normal prior. J. Am. Stat. Assoc. 2011, 106, 1383–1393. [Google Scholar] [CrossRef]
Temp(T-1) | Temp(T-24) | Humd(T-1) | Humd(T-24) | Season | Temp(T) |
---|---|---|---|---|---|
62 | 65 | 89 | 90 | 1 | 65 |
65 | 78 | 90 | 49 | 1 | 78 |
78 | 83 | 48 | 34 | 1 | 83 |
83 | 81 | 32 | 42 | 1 | 80 |
71 | 67 | 73 | 87 | 1 | 67 |
Parameter | Temp(T-1) | Temp(T-24) | Humd(T-1) | Humd(T-24) | Season | Temp(T) |
---|---|---|---|---|---|---|
count | 8736 | 8736 | 8736 | 8736 | 8736 | 8736 |
mean | 81 | 81 | 68 | 68 | 1 | 81 |
std | 9 | 9 | 21 | 21 | 1 | 9 |
min | 50 | 50 | 14 | 14 | 0 | 50 |
25% | 77 | 77 | 52 | 52 | 0 | 77 |
50% | 81 | 81 | 72 | 72 | 1 | 81 |
75% | 86 | 86 | 87 | 87 | 2 | 86 |
max | 108 | 108 | 102 | 102 | 2 | 108 |
Temp(T-1) | Temp(T-24) | Humd(T-1) | Humd(T-24) | Season | Humd(T) |
---|---|---|---|---|---|
62 | 65 | 89 | 90 | 1 | 90 |
65 | 78 | 90 | 49 | 1 | 48 |
88 | 78 | 73 | 90 | 2 | 73 |
81 | 82 | 84 | 70 | 0 | 70 |
78 | 84 | 91 | 77 | 0 | 91 |
Parameter | Temp(T-1) | Temp(T-24) | Humd(T-1) | Humd(T-24) | Season | Humd(T) |
---|---|---|---|---|---|---|
count | 8736 | 8736 | 8736 | 8736 | 8736 | 8736 |
mean | 81 | 81 | 68 | 68 | 1 | 68 |
std | 9 | 9 | 21 | 21 | 1 | 21 |
min | 50 | 50 | 14 | 14 | 0 | 14 |
25% | 77 | 77 | 52 | 52 | 0 | 52 |
50% | 81 | 81 | 72 | 72 | 1 | 72 |
75% | 86 | 86 | 87 | 87 | 2 | 87 |
max | 108 | 108 | 102 | 102 | 2 | 102 |
Column | No. of Missing Values |
---|---|
Temp(T-1) | 0 |
Temp(T-24) | 0 |
Humd(T-1) | 0 |
Humd(T-24) | 0 |
Season | 0 |
T | 0 |
Humd(H) | 0 |
Width Factor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Centroids | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
4 | 0.0085 | 0.0074 | 0.0064 | - | - | - | - | - | - | - | - |
6 | 0.0067 | 0.0057 | 0.0052 | 0.0046 | 0.0038 | - | - | - | - | - | - |
8 | 0.0072 | 0.0065 | 0.0049 | 0.0041 | 0.0038 | 0.0040 | 0.0032 | - | - | - | - |
10 | 0.0079 | 0.0058 | 0.0055 | 0.0047 | 0.0037 | 0.0042 | 0.0038 | 0.0036 | 0.0032 | - | - |
12 | 0.0078 | 0.0059 | 0.0050 | 0.0042 | 0.0040 | 0.0038 | 0.0039 | 0.0037 | 0.0044 | 0.0037 | 0.0039 |
Centroids | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 0.0082 | 0.0105 | 0.0057 | - | - | - | - | - | - | - | - |
6 | 0.0066 | 0.0053 | 0.0044 | 0.0034 | 0.0032 | - | - | - | - | - | - |
8 | 0.0081 | 0.0077 | 0.0065 | 0.0033 | 0.0034 | 0.0043 | 0.0109 | - | - | - | - |
10 | 0.0081 | 0.0049 | 0.0079 | 0.0079 | 0.0046 | 0.0079 | 0.0064 | 0.0032 | 0.0026 | - | - |
12 | 0.0075 | 0.0043 | 0.0034 | 0.0037 | 0.0039 | 0.0037 | 0.0024 | 0.0031 | 0.0024 | 0.0022 | 0.0028 |
Width Factor | |||||||||
---|---|---|---|---|---|---|---|---|---|
Centroids | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
4 | 0.01685 | 0.01376 | 0.0112 | - | - | - | - | - | - |
6 | 0.01272 | 0.0119 | 0.0109 | 0.01158 | 0.0101 | - | - | - | - |
8 | 0.0137 | 0.0118 | 0.0102 | 0.01121 | 0.01 | 0.0110 | 0.01 | - | - |
10 | 0.0137 | 0.012 | 0.012 | 0.011 | 0.0112 | 0.0106 | 0.0108 | 0.0116 | 0.01 |
12 | 0.01381 | 0.01061 | 0.0110 | 0.01051 | 0.0099 | 0.0118 | 0.01 | 0.01 | 0.011 |
Width Factor | |||||||||
---|---|---|---|---|---|---|---|---|---|
Centroids | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
4 | 0.0165 | 0.0122 | 0.0105 | - | - | - | - | - | - |
6 | 0.0122 | 0.0139 | 0.0100 | 0.0112 | 0.0083 | - | - | - | - |
8 | 0.0134 | 0.0100 | 0.0098 | 0.0088 | 0.0112 | 0.0095 | 0.0082 | - | - |
10 | 0.0188 | 0.0099 | 0.0098 | 0.0086 | 0.0086 | 0.0164 | 0.0087 | 0.0083 | 0.0083 |
12 | 0.0136 | 0.0135 | 0.0111 | 0.0090 | 0.0123 | 0.0095 | 0.0096 | 0.0084 | 0.0078 |
Weightage of Feature | ||
---|---|---|
Feature | Temperature Forecasting | Humidity Forecasting |
Temp(T-24) | 0.6090 +/− 0.0361 | 0.0319 +/− 0.0034 |
Temp(T-1) | 0.3438 +/− 0.0358 | 0.0344 +/− 0.0048 |
Humd(T-24) | 0.0239 +/− 0.0027 | 0.1512 +/− 0.0610 |
Humd(T-1) | 0.0200 +/− 0.0021 | 0.7757 +/− 0.0598 |
Season | 0.0033 +/− 0.0018 | 0.0068 +/− 0.0025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veeramsetty, V.; Kiran, P.; Sushma, M.; Salkuti, S.R. Weather Forecasting Using Radial Basis Function Neural Network in Warangal, India. Urban Sci. 2023, 7, 68. https://doi.org/10.3390/urbansci7030068
Veeramsetty V, Kiran P, Sushma M, Salkuti SR. Weather Forecasting Using Radial Basis Function Neural Network in Warangal, India. Urban Science. 2023; 7(3):68. https://doi.org/10.3390/urbansci7030068
Chicago/Turabian StyleVeeramsetty, Venkataramana, Prabhu Kiran, Munjampally Sushma, and Surender Reddy Salkuti. 2023. "Weather Forecasting Using Radial Basis Function Neural Network in Warangal, India" Urban Science 7, no. 3: 68. https://doi.org/10.3390/urbansci7030068
APA StyleVeeramsetty, V., Kiran, P., Sushma, M., & Salkuti, S. R. (2023). Weather Forecasting Using Radial Basis Function Neural Network in Warangal, India. Urban Science, 7(3), 68. https://doi.org/10.3390/urbansci7030068