Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Closeness, Farness, and Network Quantity Penalized by Distance
3.1.1. Closeness
3.1.2. Farness
- The set of polylines in the network radius from link x is denoted Rx
- The distance, according to a metric M, along a geodesic defined by M, between an origin polyline x and a destination polyline y is denoted dm(x,y)
- The weight of a polyline y is denoted W(y).
3.2. Betweenness
3.3. Moran Index
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guimarães, P. Tourism and Authenticity: Analyzing Retail Change in Lisbon City Center. Sustainability 2022, 14, 8111. [Google Scholar] [CrossRef]
- Milovanović, A.; Dragutinovic, A.; Nikezić, A.; Pottgiesser, U.; Stojanovski, M.; Deskova, A.I.; Ivanovski, J.; Damjanovska, T. Rehabilitation of Mass Housing as a Contribution to Social Equality: Insights from the East-West European Academic Dialogue. Sustainability 2022, 14, 8106. [Google Scholar] [CrossRef]
- Milin, I.A.; Pupazan, M.C.M.; Rehman, A.; Chirtoc, I.E.; Ecobici, N. Examining the Relationship between Rural and Urban Populations’ Access to Electricity and Economic Growth: A New Evidence. Sustainability 2022, 14, 8125. [Google Scholar] [CrossRef]
- Busca, F.; Revelli, R. Green Areas and Climate Change Adaptation in a Urban Environment: The Case Study of “Le Vallere” Park (Turin, Italy). Sustainability 2022, 14, 8091. [Google Scholar] [CrossRef]
- Ghali-Zinoubi, Z. Examining Drivers of Environmentally Conscious Consumer Behavior: Theory of Planned Behavior Extended with Cultural Factors. Sustainability 2022, 14, 8072. [Google Scholar] [CrossRef]
- Yu, P.L.; Ab Ghafar, N.; Adam, M.; Goh, H.C. Understanding the Human Dimensions of Recycling and Source Separation Practices at the Household Level: An Evidence in Perak, Malaysia. Sustainability 2022, 14, 8023. [Google Scholar] [CrossRef]
- Shen, L.; Li, Y.; Lan, S.; Yao, M. Social Benefits Evaluation of Rural Micro-Landscapes in Southeastern Coastal Towns of China—The Case of Jinjiang, Fujian. Sustainability 2022, 14, 8036. [Google Scholar] [CrossRef]
- Liu, T.; Han, G.; Nie, W. Optimal Residence: Does Air Quality Affect Settlement Decisions of Urban Floating Migrants? Sustainability 2022, 14, 8042. [Google Scholar] [CrossRef]
- Keeley, M.; Benton-Short, L. Urban Sustainability in the US; Palgrave Macmillan: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Karlen, D.L. Sustainability Indicators: A Scientific Assessment. J. Environ. Qual. 2008, 37, 1663. [Google Scholar] [CrossRef]
- Pasternack, R.; Wishnie, M.; Clarke, C.; Wang, Y.; Belair, E.; Marshall, S.; Gu, H.; Nepal, P.; Dolezal, F.; Lomax, G.; et al. What Is the Impact of Mass Timber Utilization on Climate and Forests? Sustainability 2022, 14, 758. [Google Scholar] [CrossRef]
- Liu, M.; Wei, H.; Dong, X.; Wang, X.-C.; Zhao, B.; Zhang, Y. Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review. Sustainability 2022, 14, 6926. [Google Scholar] [CrossRef]
- Guo, N.; Liang, X.; Meng, L. Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China. Sustainability 2022, 14, 7744. [Google Scholar] [CrossRef]
- Wang, Y.; Xi, M.; Chen, H.; Lu, C. Evolution and Driving Mechanism of Tourism Flow Networks in the Yangtze River Delta Urban Agglomeration Based on Social Network Analysis and Geographic Information System: A Double-Network Perspective. Sustainability 2022, 14, 7656. [Google Scholar] [CrossRef]
- Zou, M.; Li, C.; Xiong, Y. Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China. Sustainability 2022, 14, 7550. [Google Scholar] [CrossRef]
- Wang, F.; Ye, M.; Zhu, H.; Gu, D. Optimization Method for Conventional Bus Stop Placement and the Bus Line Network Based on the Voronoi Diagram. Sustainability 2022, 14, 7918. [Google Scholar] [CrossRef]
- Emanović, M.; Jakara, M.; Barić, D. Challenges and Opportunities for Future BEVs Adoption in Croatia. Sustainability 2022, 14, 8080. [Google Scholar] [CrossRef]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef]
- Lai, Y. Urban Intelligence for Carbon Neutral Cities: Creating Synergy among Data, Analytics, and Climate Actions. Sustainability 2022, 14, 7286. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Zhang, W. Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability. Sustainability 2022, 14, 7210. [Google Scholar] [CrossRef]
- Zaleckis, K.; Chmielewski, S.; Kamičaitytė, J.; Grazuleviciute-Vileniske, I.; Lipińska, H. Walkability Compass—A Space Syntax Solution for Comparative Studies. Sustainability 2022, 14, 2033. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Hoffimann, E. Development of a Neighbourhood Walkability Index for Porto Metropolitan Area. How Strongly Is Walkability Associated with Walking for Transport? Int. J. Environ. Res. Public Health 2018, 15, 2767. [Google Scholar] [CrossRef]
- Hajna, S.; Dasgupta, K.; Halparin, M.; Ross, N.A. Neighborhood Walkability: Field validation of geographic information system measures. Am. J. Prev. Med. 2013, 44, e55–e59. [Google Scholar] [CrossRef]
- Bramson, A.; Okamoto, K.; Hori, M. Comparing Methods for Measuring Walkability. Complex Syst. 2021, 30, 539–565. [Google Scholar] [CrossRef]
- Sundquist, K.; Eriksson, U.; Kawakami, N.; Skog, L.; Ohlsson, H.; Arvidsson, D. Neighborhood walkability, physical activity, and walking behavior: The Swedish Neighborhood and Physical Activity (SNAP) study. Soc. Sci. Med. 2011, 72, 1266–1273. [Google Scholar] [CrossRef]
- Blečić, I.; Cecchini, A.; Congiu, T.; Fancello, G.; Trunfio, G.A. Evaluating walkability: A capability-wise planning and design support system. Int. J. Geogr. Inf. Sci. 2015, 29, 1350–1374. [Google Scholar] [CrossRef]
- Lwin, K.K.; Murayama, Y. Modelling of urban green space walkability: Eco-friendly walk score calculator. Comput. Environ. Urban Syst. 2011, 35, 408–420. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Macaulay, G.; Middleton, N.; Boruff, B.; Bull, F.; Butterworth, I.; Badland, H.; Mavoa, S.; Roberts, R.; Christian, H. Developing a research and practice tool to measure walkability: A demonstration project. Health Promot. J. Aust. 2014, 25, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.N.; Elmokadem, A.A.E.; Ali, S.M.; Badawey, N. Improve Urban Form to Achieve High Social Sustainability in a Residential Neighborhood Salam New City as a Case Study. Buildings 2022, 12, 1935. [Google Scholar] [CrossRef]
- Boeing, G.; Church, D.; Hubbard, H.; Mickens, J.; Rudis, L. LEED-ND and livability revisited. Berkeley Plan. J. 2014, 27, 31–55. [Google Scholar]
- Das, S.; Bhattacharya, S. Factors affecting beach walkability- Tourists’ perception study at selected beaches of West Bengal, India. J. Outdoor Recreat. Tour. 2021, 35, 100423. [Google Scholar] [CrossRef]
- Blečić, I.; Congiu, T.; Fancello, G.; Trunfio, G.A. Planning and Design Support Tools for Walkability: A Guide for Urban Analysts. Sustainability 2020, 12, 4405. [Google Scholar] [CrossRef]
- Tarek, M.; Hassan, G.F.; Elshater, A.; Elfayoumi, M. Investigating Built Environment Indicators to Develop a Local Walkability Index. J. Contemp. Urban Aff. 2021, 5, 235–251. [Google Scholar] [CrossRef]
- Hussein, N. The Pedestrianisation and Its Relation with Enhancing Walkability in Urban Spaces. J. Contemp. Urban Aff. 2018, 2, 102–112. [Google Scholar] [CrossRef]
- Kim, M.J.; Hall, C.M. Is tourist walkability and well-being different? Curr. Issues Tour. 2021, 26, 171–176. [Google Scholar] [CrossRef]
- Nassar, U.A.E. Urban Acupuncture in Large Cities: Filtering Framework to Select Sensitive Urban Spots in Riyadh for Effective Urban Renewal. J. Contemp. Urban Aff. 2021, 5, 1–18. [Google Scholar] [CrossRef]
- Barbosa, J.P.d.A.S.; Guerra, P.H.; Santos, C.d.O.; Nunes, A.P.d.O.B.; Turrell, G.; Florindo, A.A. Walkability, Overweight, and Obesity in Adults: A Systematic Review of Observational Studies. Int. J. Environ. Res. Public Health 2019, 16, 3135. [Google Scholar] [CrossRef]
- EL Helou, M.A. Shaping the City that Decreases Overweight and Obesity through Healthy Built Environment. J. Contemp. Urban Aff. 2019, 3, 16–27. [Google Scholar] [CrossRef]
- Kashef, M. The building blocks of walkability: Pedestrian activity in Abu Dhabi city center. Front. Arch. Res. 2021, 11, 203–223. [Google Scholar] [CrossRef]
- Azmi, D.I.; Karim, H.A. Implications of Walkability Towards Promoting Sustainable Urban Neighbourhood. Procedia—Soc. Behav. Sci. 2012, 50, 204–213. [Google Scholar] [CrossRef]
- Yadi; Putra, H.T. Authenticity and Walkability of Iconic Heritage Destination Bandung Indonesia. Int. J. Community Serv. 2021, 1, 169–181. [Google Scholar] [CrossRef]
- El-Ghonaimy, I.H. Visual pollution phenomena and sensitivity of residences in heritage city centers Case of: Old district of Manama city, Kingdom of Bahrain. J. Contemp. Urban Aff. 2019, 3, 175–190. [Google Scholar] [CrossRef]
- Liow, M.L.S. Research Framework: Tourist Walkability and Sustainable Tourism Impact on Residents. ASEAN J. Hosp. Tour. 2022, 20, 74–93. [Google Scholar] [CrossRef]
- Mayne, D.J.; Morgan, G.G.; Jalaludin, B.B.; Bauman, A.E. Area-Level Walkability and the Geographic Distribution of High Body Mass in Sydney, Australia: A Spatial Analysis Using the 45 and Up Study. Int. J. Environ. Res. Public Health 2019, 16, 664. [Google Scholar] [CrossRef]
- Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [Google Scholar] [CrossRef]
- Barreda-Luna, A.A.; Rodríguez-Reséndiz, J.; Rodríguez-Abreo, O.; Álvarez-Alvarado, J.M. Spatial Models and Neural Network for Identifying Sustainable Transportation Projects with Study Case in Querétaro, an Intermediate Mexican City. Sustainability 2022, 14, 7796. [Google Scholar] [CrossRef]
- Alves, H.; Brito, P.; Campos, P. Centrality measures in interval-weighted networks. J. Complex Netw. 2022, 10, cnac031. [Google Scholar] [CrossRef]
- Rui, Y.; Ban, Y. Exploring the relationship between street centrality and land use in Stockholm. Int. J. Geogr. Inf. Sci. 2014, 28, 1425–1438. [Google Scholar] [CrossRef]
- Adel, H.; Salheen, M.; Mahmoud, R.A. Crime in relation to urban design. Case study: The Greater Cairo Region. Ain Shams Eng. J. 2016, 7, 925–938. [Google Scholar] [CrossRef]
- Attia, M. Enhancing Security in Affordable Housing: The Case of Prince Fawaz Project. J. Contemp. Urban Aff. 2021, 5, 85–100. [Google Scholar] [CrossRef]
- Boeing, G. Pynamical: Model and visualize discrete nonlinear dynamical systems, chaos, and fractals. J. Open Source Educ. 2018, 1, 15. [Google Scholar] [CrossRef]
- Hillier, B.; Iida, S. Network effects and psychological effects: A theory of urban movement. In Proceedings of the 5th International Space Syntax Symposium, Delft, The Netherlands, 13–17 June 2005; pp. 475–490. [Google Scholar] [CrossRef]
- Yin, C.; Liu, Y.; Wei, X.; Chen, W. Road Centrality and Urban Landscape Patterns in Wuhan City, China. J. Urban Plan. Dev. 2018, 144, 05018009. [Google Scholar] [CrossRef]
- Yilmaz, D.G. Model Cities for Resilience: Climate-led Initiatives. J. Contemp. Urban Aff. 2021, 5, 47–58. [Google Scholar] [CrossRef]
- Marmolejo-Duarte, C. Does urban centrality influence residential prices? An analysis for the Barcelona Metropolitan Area. Rev. Construcción J. Constr. 2017, 16, 57–65. [Google Scholar] [CrossRef]
- Li, H.; Guan, S.; Liu, Y. Analysis on the Steady Growth Effect of China’s Fiscal Policy from a Dynamic Perspective. Sustainability 2022, 14, 7648. [Google Scholar] [CrossRef]
- Mehaffy, M.; Porta, S.; Rofè, Y.; Salingaros, N. Urban nuclei and the geometry of streets: The ‘emergent neighborhoods’ model. Urban Des. Int. 2010, 15, 22–46. [Google Scholar] [CrossRef]
- Amézquita-López, J.; Valdés-Atencio, J.; Angulo-García, D. Understanding Traffic Congestion via Network Analysis, Agent Modeling, and the Trajectory of Urban Expansion: A Coastal City Case. Infrastructures 2021, 6, 85. [Google Scholar] [CrossRef]
- Amen, M.A. The Assessment of Cities Physical Complexity through Urban Energy Consumption. Civ. Eng. Arch. 2021, 9, 2517–2527. [Google Scholar] [CrossRef]
- Amen, M.A. The effects of buildings’ physical characteristics on urban network centrality. Ain Shams Eng. J. 2022, 13, 101765. [Google Scholar] [CrossRef]
- Cooper, C.H. Spatial localization of closeness and betweenness measures: A self-contradictory but useful form of network analysis. Int. J. Geogr. Inf. Sci. 2015, 29, 1–17. [Google Scholar] [CrossRef]
- Porta, S.; Strano, E.; Iacoviello, V.; Messora, R.; Latora, V.; Cardillo, A.; Wang, F.; Scellato, S. Street Centrality and Densities of Retail and Services in Bologna, Italy. Environ. Plan. B Plan. Des. 2009, 36, 450–465. [Google Scholar] [CrossRef]
- Goremyko, M.V.; Makarov, V.V.; Hramov, A.E.; Kirsanov, D.V.; Maksimenko, V.A.; Ivanov, A.V.; Yashkov, I.A.; Boccaletti, S. Betweenness centrality in urban networks: Revealing the transportation backbone of the country from the demographic data. IOP Conf. Ser. Earth Environ. Sci. 2018, 177, 012017. [Google Scholar] [CrossRef]
- Agryzkov, T.; Tortosa, L.; Vicent, J.F. A variant of the current flow betweenness centrality and its application in urban networks. Appl. Math. Comput. 2018, 347, 600–615. [Google Scholar] [CrossRef]
- Brown, F.E. Space Is the Machine; Space Syntax: London, UK, 2007. [Google Scholar] [CrossRef]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Turner, A.; Penn, A.; Hillier, B. An Algorithmic Definition of the Axial Map. Environ. Plan. B Plan. Des. 2005, 32, 425–444. [Google Scholar] [CrossRef]
- Jiang, B.; Claramunt, C.; Klarqvist, B. Integration of space syntax into GIS for modelling urban spaces. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 161–171. [Google Scholar] [CrossRef]
- Al_Sayed, K.; Turner, A.; Hillier, B.; Iida, S.; Penn, A. Space Syntax Methodology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–117. [Google Scholar] [CrossRef]
- Steadman, P. Developments in Space Syntax. Environ. Plan. B Plan. Des. 2004, 31, 483–486. [Google Scholar] [CrossRef]
- Cooper, C.H.; Chiaradia, A.J. sDNA: 3-d spatial network analysis for GIS, CAD, Command Line & Python. Softwarex 2020, 12, 100525. [Google Scholar] [CrossRef]
- Cooper, C.; Chiaradia, A. sDNA: How and why we reinvented Spatial Network Analysis for health, eco-nomics and active modes of transport. In Proceedings of the GIS Research UK (GISRUK), Leeds, UK, 15–17 April 2015; pp. 122–127. [Google Scholar] [CrossRef]
- Schneider, R.J.; Arnold, L.S.; Ragland, D.R. Methodology for Counting Pedestrians at Intersections. Transp. Res. Rec. J. Transp. Res. Board 2009, 2140, 1–12. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Xu, W.; Pu, Z.; Zhang, S.; Zhou, Y. Impacts of mobile phone distractions on pedestrian crossing behavior at signalized intersections: An observational study in China. Adv. Mech. Eng. 2019, 11, 1687814019841838. [Google Scholar] [CrossRef]
- Shirazi, M.S.; Morris, B. A typical video-based framework for counting, behavior and safety analysis at intersections. In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Republic of Korea, 28 June–1 July 2015; pp. 1264–1269. [Google Scholar] [CrossRef]
- Kothuri, S.; Nordback, K.; Schrope, A.; Phillips, T.; Figliozzi, M. Bicycle and pedestrian counts at signalized intersections using existing infrastructure opportunities and challenges. Transp. Res. Rec. J. Transp. Res. Board 2017, 2644, 11–18. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS Statistics; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Hui, E.G.M. Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Cooper, C. Spatial Design Network Analysis (sDNA); School of Geography and Planning: Cardiff, UK, 2021. [Google Scholar]
- O’Sullivan, D. Spatial Network Analysis. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1217–1233. Available online: http://link.springer.com/10.1007/978-3-642-23430-9 (accessed on 20 September 2022).
- Porta, S.; Crucitti, P.; Latora, V. Multiple centrality assessment in Parma: A network analysis of paths and open spaces. Urban Des. Int. 2008, 13, 41–50. [Google Scholar] [CrossRef]
- Porta, S.; Crucitti, P.; Latora, V. The Network Analysis of Urban Streets: A Primal Approach. Environ. Plan. B Plan. Des. 2006, 33, 705–725. [Google Scholar] [CrossRef]
- Barthelemy, M. Betweenness Centrality. In Spatial Networks; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–108. [Google Scholar] [CrossRef]
- McLaughlin, A.; Bader, D.A. Accelerating GPU betweenness centrality. Commun. ACM 2018, 61, 85–92. [Google Scholar] [CrossRef]
- Changat, M.; Narasimha-Shenoi, P.G.; Seethakuttyamma, G. Betweenness in graphs: A short survey on shortest and induced path betweenness. AKCE Int. J. Graphs Comb. 2019, 16, 96–109. [Google Scholar] [CrossRef]
- Verbavatz, V.; Barthelemy, M. Betweenness centrality in dense spatial networks. Phys. Rev. E 2022, 105, 054303. [Google Scholar] [CrossRef]
- Unnithan, S.K.R.; Kannan, B.; Jathavedan, M. Betweenness Centrality in Some Classes of Graphs. Int. J. Comb. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Masucci, A.P.; Molinero, C. Robustness and closeness centrality for self-organized and planned cities. Eur. Phys. J. B 2016, 89, 1–8. [Google Scholar] [CrossRef]
- Kessler, N.H. Response to review of Ontology and closeness in human-nature relationships: Beyond dualisms, materialism and posthumanism by Neil H. Kessler. J. Outdoor Environ. Educ. 2019, 23, 87–92. [Google Scholar] [CrossRef]
- Brandes, U.; Borgatti, S.P.; Freeman, L.C. Maintaining the duality of closeness and betweenness centrality. Soc. Netw. 2016, 44, 153–159. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0378873315000738 (accessed on 20 September 2022). [CrossRef]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35. [Google Scholar] [CrossRef]
- Chen, Y. New Approaches for Calculating Moran’s Index of Spatial Autocorrelation. PLoS ONE 2013, 8, e68336. [Google Scholar] [CrossRef]
- Musakwa, W.; van Niekerk, A. Monitoring Urban Sprawl and Sustainable Urban Development Using the Moran Index: A case study of Stellenbosch, South Africa. Int. J. Appl. Geospat. Res. 2014, 5, 1–20. [Google Scholar] [CrossRef]
- Griffith, D. Spatial Autocorrelation; Oxford University: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Fischer, M.M.; Griffith, D.A. Modelling Spatial Autocorrelation in Spatial Interaction Data; SSRN: Rochester, NY, USA, 2008; pp. 1–32. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.; Hsu, W.-L.; Zhang, C.; Liu, H.-L. Service Facilities in Heritage Tourism: Identification and Planning Based on Space Syntax. Information 2021, 12, 504. [Google Scholar] [CrossRef]
Point | In-29 | Out-29 | In -30 | Out-30 | AV-29 | AV-30 | NQPD | Betweenness |
---|---|---|---|---|---|---|---|---|
1 | 49 | 41 | 46 | 36 | 45 | 41 | 102.91 | 0.00609 |
2 | 38 | 30 | 55 | 35 | 34 | 45 | 105.09 | 0.01688 |
3 | 57 | 58 | 130 | 129 | 58 | 130 | 114.34 | 0.002256 |
4 | 11 | 14 | 8 | 11 | 13 | 10 | 108.80 | 0.00247 |
5 | 36 | 37 | 25 | 24 | 37 | 24 | 109.56 | 0.009457 |
6 | 5 | 12 | 3 | 12 | 8 | 8 | 106.55 | 0.003752 |
7 | 58 | 16 | 62 | 35 | 37 | 49 | 107.77 | 0.014994 |
8 | 3 | 6 | 4 | 5 | 4 | 5 | 94.45 | 0.0011 |
9 | 11 | 12 | 14 | 13 | 11 | 14 | 126.68 | 0.042536 |
10 | 5 | 4 | 8 | 7 | 5 | 8 | 108.12 | 0.001334 |
11 | 73 | 70 | 75 | 92 | 72 | 84 | 119.30 | 0.062 |
12 | 3 | 2 | 11 | 7 | 3 | 9 | 108.76 | 0.006631 |
13 | 10 | 5 | 9 | 15 | 8 | 12 | 117.09 | 0.0031 |
14 | 56 | 35 | 58 | 47 | 46 | 52 | 96.23 | 0.001774 |
15 | 27 | 26 | 57 | 31 | 27 | 44 | 119.10 | 0.002357 |
16 | 78 | 75 | 48 | 47 | 77 | 48 | 99.45 | 0.012631 |
17 | 7 | 4 | 8 | 4 | 6 | 6 | 98.26 | 0.000224 |
18 | 17 | 9 | 56 | 19 | 13 | 38 | 92.78 | 0.005063 |
19 | 53 | 44 | 54 | 45 | 49 | 49 | 100.41 | 0.008649 |
20 | 22 | 17 | 27 | 37 | 20 | 32 | 114.92 | 0.002851 |
21 | 26 | 24 | 40 | 41 | 25 | 41 | 159.39 | 0.006979 |
22 | 15 | 21 | 39 | 44 | 18 | 42 | 105.09 | 0.01688 |
23 | 53 | 44 | 54 | 45 | 49 | 49 | 92.52 | 0.005057 |
24 | 17 | 9 | 56 | 19 | 13 | 38 | 71.95 | 0.000726 |
25 | 24 | 23 | 40 | 43 | 24 | 42 | 94.45 | 0.0011 |
26 | 26 | 22 | 39 | 41 | 24 | 40 | 98.95 | 0.002184 |
27 | 17 | 9 | 56 | 19 | 13 | 38 | 102.20 | 0.002184 |
28 | 26 | 22 | 40 | 41 | 24 | 41 | 0.00 | 0.014842 |
29 | 53 | 44 | 54 | 45 | 49 | 49 | 97.21 | 0.0059 |
30 | 37 | 36 | 25 | 27 | 37 | 26 | 89.10 | 0.002795 |
31 | 36 | 38 | 24 | 24 | 37 | 24 | 68.96 | 0.000568 |
32 | 17 | 9 | 56 | 19 | 13 | 38 | 85.63 | 0.003185 |
NO | IN 29–30 | OUT 29–30 | NQPD | BETWEENNESS | |
---|---|---|---|---|---|
1 | Check Point | 70–75 | 73–92 | 119.3 | 0.062 |
2 | Buyuk Han | 57–130 | 58–129 | 110.2 | 0.015 |
3 | Bedesten | 78–48 | 75–47 | 107.8 | 0.014 |
4 | Venetian Column | 36–25 | 37–24 | 109.5 | 0.009 |
Null Hypothesis | Test | Sig | Decision |
---|---|---|---|
The distributions of Betweenness, Closeness, AV-29 and AV-30 are the same | Related-Samples Friedman’s Two-Way Analysis of Variance by Ranks | 0.001 | Reject the null hypothesis. |
Total N | 32 | ||
Test Statistics | 81.881 | ||
Degree of Freedom | 3 | ||
Asymptotic test (two tailed) | 0.000 | ||
Asymptotic significances are displayed. The significance level is 0.01. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amen, M.A.; Afara, A.; Nia, H.A. Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas. Urban Sci. 2023, 7, 67. https://doi.org/10.3390/urbansci7020067
Amen MA, Afara A, Nia HA. Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas. Urban Science. 2023; 7(2):67. https://doi.org/10.3390/urbansci7020067
Chicago/Turabian StyleAmen, Mustafa Aziz, Ahmad Afara, and Hourakhsh Ahmad Nia. 2023. "Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas" Urban Science 7, no. 2: 67. https://doi.org/10.3390/urbansci7020067
APA StyleAmen, M. A., Afara, A., & Nia, H. A. (2023). Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas. Urban Science, 7(2), 67. https://doi.org/10.3390/urbansci7020067