What Happens in Your Brain When You Walk Down the Street? Implications of Architectural Proportions, Biophilia, and Fractal Geometry for Urban Science
Abstract
:1. Introduction and Background
2. Research Methodology
2.1. Factors That Influence the Use of Urban Space
2.2. Data from Fractal Fluency
2.3. Data from Eye-Scanning and Visual Simulation Software
2.4. Biologically-Based Beauty and the Sublime
2.5. Universality of Neurological Responses to Visual Environments
2.6. The Time Sequence of Neural Image Processing
2.7. Literature Review and Supplemental Information
3. Informational Decisions Direct the Act of Walking
3.1. Fractal Patterns and Visual Attention Software
3.2. Fractal Fluency and Restorative Environments
3.3. Aesthetic Experience
- An aesthetic experience has an evaluative dimension, in the sense that it involves the valuation of the experience of an object or scene;
- It has a phenomenological, affective dimension, in that it is individually felt and savored; and
3.4. Visual Perception
- Perception occurs when the brain assembles the data of tangible, sensory input in a mainly automatic process.
- In apprehension, the individual mind grasps the perceived input and actively contemplates it based on the individual’s reason, judgment, thoughts, and associations.
- Comprehension is how the mind comes to know what was pondered, generating some understanding of it or conclusion with regard to the input.
4. The Temporal Sequence of the First Milliseconds of Visual Stimulus Processing
4.1. Three Stages for Perception Cycles
4.2. Biophilic Review
- Sunlight: preferably from several directions.
- Color: variety and combinations of hues.
- Gravity: balance and equilibrium about the vertical axis.
- Fractals: things occurring on nested scales.
- Curves: on small, medium, and large scales.
- Detail: meant to attract the eye.
- Water: to be both heard and seen.
- Life: living plants, animals, and other people.
- Representations-of-nature: naturalistic ornament, realistic paintings, reliefs, and figurative sculptures—including face-like structures.
- Organized-complexity: intricate yet coherent designs—and extends to symmetries of abstract face-like structures.
4.3. Perception Cycles
4.4. Bottom-Up and Top-Down Processing
4.5. Ambulatory Motion and Brain Processing
5. Discussion: Urban form and User Experience
5.1. The Importance of Fractal Patterns
5.2. Walking Down a Street
5.3. Fractals in Navigation and Wayfinding
5.4. Façade Fractals and Urban Plan Fractals
6. Conclusions
- Preserve appropriate buildings that indubitably enhance human well-being.
- Enhance and transform the façades of buildings that provide no pre-attentive stimulation or are acknowledged to generate stress.
- Remove poorly-built buildings whose appearance is acknowledged to generate stress or which otherwise pose a threat to human well-being, both physical and emotional.
- Build beautiful, durable, and long-term useful new buildings and urban fabric that conform to the most basic visual aesthetic experiential needs of humans.
7. Supplemental Information: Literature Survey
7.1. Urban and Neuroaesthetic Anxiety, Stress, and Wellbeing
7.2. The Pedestrian Experience
7.3. Urban Eye Tracking and Visual Attention Software (VAS)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fischmeister, F.P.; Martins, M.J.D.; Beisteiner, R.; Fitch, W.T. Self-similarity and Recursion as Default Modes in Human Cognition. Cortex 2016, 97, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.J.; Fischmeister, F.P.; Puig-Waldmüller, E.; Oh, J.; Geissler, A.; S Robinson, S.; Fitch, W.T.; Beisteiner, R. Fractal image perception provides novel insights into hierarchical cognition. Neuroimage 2014, 96, 300–308. [Google Scholar] [CrossRef]
- Salingaros, N.A. Fractal Art and Architecture Reduce Physiological Stress. J. Biourbanism 2012, 2, 11–28. [Google Scholar]
- Lavdas, A.; Salingaros, N.; Sussman, A. Visual Attention Software: A new tool for understanding the ‘subliminal’ experience of the built environment. Appl. Sci. 2021, 11, 6197. [Google Scholar] [CrossRef]
- Salingaros, N.; Sussman, A. Biometric pilot-studies reveal the arrangement and shape of windows on a traditional façade to be implicitly ‘engaging’, whereas contemporary façades are not. Urban Sci. 2020, 4, 26. [Google Scholar] [CrossRef]
- Sussman, A.; Hollander, J.B. Cognitive Architecture: Designing for How We Respond to the Built Environment, 2nd ed.; Routledge: New York, NY, USA, 2021. [Google Scholar]
- Spanjar, G.; Suurenbroek, F. Eye-Tracking the City: Matching the Design of Streetscapes in High-Rise Environments with Users’ Visual Experiences. J. Digit. Landsc. Archit. (JoDLA) 2020, 5, 374–385. [Google Scholar]
- Buras, N.H. The Art of Classic Planning; Harvard University Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Salingaros, N. Rules for Urban Space: Design Patterns Create the Human Scale. J. Urban Res. Dev. 2021, 2, 4–16. [Google Scholar]
- Smith, N. Employees Reveal How Stress Affects Their Jobs. Bus. News Dly. 2020. Available online: https://www.businessnewsdaily.com/2267-workplace-stress-health-epidemic-perventable-employee-assistance-programs.html (accessed on 20 August 2021).
- Jacobs, J. The Death and Life of Great American Cities; Vintage: New York, NY, USA, 2016. [Google Scholar]
- Alexander, C. The Timeless Way of Building; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Ulrich, R.S.; Simons, R.F. Recovery from stress during exposure to everyday outdoor environments. Proc. EDRA 1986, 17, 115–122. [Google Scholar]
- Ulrich, R.S. Biophilia, Biophobia and Natural Landscapes. In The Biophilia Hypothesis; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Ulrich, R.S. Natural versus urban scenes: Some psychophysiological effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. Attention Restoration Theory. In Cognition and Environment: Functioning in an Uncertain World; Praeger: New York, NY, USA, 1982. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982. [Google Scholar]
- Fairbanks, M.S.; Taylor, R.P. Scaling analysis of spatial and temporal patterns: From the human eye to the foraging albatross. In Non-Linear Dynamical Analysis for the Behavioral Sciences Using Real Data; Taylor and Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Taylor, R.P. Order in Pollock’s Chaos. Sci. Am. 2002, 287, 117–121. Available online: http://authenticationinart.org/pdf/literature/Richard-P.-TaylorOrder-in-Pollocks-Chaos.pdf (accessed on 5 January 2022). [CrossRef]
- Spehar, B.; Clifford, C.W.; Newell, B.R.; Taylor, R.P. Universal aesthetic of fractals. Comput. Graph. 2003, 27, 813–820. [Google Scholar] [CrossRef]
- Spehar, B.; Taylor, R. Fractals in art and nature: Why do we like them? Proc. SPIE 2013, 8651, 865118-1. [Google Scholar]
- Bies, A.J.; Blanc-Goldhammer, D.R.; Boydston, C.R.; Taylor, R.P.; Sereno, M.E. Aesthetic responses to exact fractals driven by physical complexity. Front. Hum. Neurosci. 2016, 10, 210. [Google Scholar] [CrossRef]
- Spehar, B.; Walker, N.; Taylor, R.P. Taxonomy of individual variations in aesthetic responses to fractal patterns. Front. Hum. Neurosci. 2016, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Cutting, J.E.; Garvin, J.J. Fractal curves and complexity. Percept. Psychophys. 1987, 42, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlow, C.A.; Viskontas, I.V.; Matlin, A.; Boydston, C.; Boxer, A.; Taylor, R.P. Temporal structure of human gaze dynamics is invariant during free viewing. PLoS ONE 2015, 10, e0139379. [Google Scholar] [CrossRef] [Green Version]
- Moon, P.; Muday, J.; Raynor, S.; Schirillo, J.; Boydston, C.; Fairbanks, M.S.; Taylor, R.P. Fractal images induce fractal pupil dilations and constrictions. Int. J. Psychophysiol. 2014, 93, 316–321. [Google Scholar] [CrossRef]
- Brouwer, A.; Knill, D.C. Humans use visual and remembered information about object location to plan pointing movements. J. Vis. 2009, 9, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.P.; Juliani, A.W.; Bies, A.J.; Boydston, C.; Spehar, B.; Sereno, M.E. The Implications of Fractal Fluency for Biophilic Architecture. J. Biourbanism 2017, 6, 23–40. [Google Scholar]
- Hagerhall, C.M.; Laike, T.; Küller, M.; Marcheschi, E.; Boydston, C.; Taylor, R.P. Human Physiological Benefits of Viewing Nature: EEG Response to Exact and Statistical Fractal Patterns. J. Nonlinear Dyn. Psychol. Life Sci. 2015, 19, 1–12. [Google Scholar]
- Isherwood, Z.J.; Schira, M.M.; Spehar, B. The tuning of human cortex to variations in 1/f amplitude spectra and fractal properties of synthetic noise images. Neuroimage 2016, 146, 642–657. [Google Scholar] [CrossRef]
- Spehar, B.; Wong, S.; van de Klundert, S.; Lui, J.; Clifford, C.W.G.; Taylor, R.P. Beauty and the beholder: The role of visual sensitivity in visual preference. Front. Hum. Neurosci. 2015, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliani, A.W.; Bies, A.J.; Boydston, C.R.; Taylor, R.P.; Sereno, M.E. Navigation performance in virtual environments varies with fractal dimension of landscape. J. Environ. Psychol. 2016, 47, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Rogowitz, B.E.; Voss, R.F. Shape perception and low-dimension fractal boundary contours. Human vision and electronic imaging: Models, methods, and applications. Int. Soc. Opt. Photonics 1990, 1249, 387–394. [Google Scholar]
- Bies, A.; Kikumoto, A.; Boydston, C.; Greeenfield, A.; Chauvin, K.; Taylor, R.; Sereno, M. Percepts from noise patterns: The role of fractal dimension in object pareidolia. J. Vis. 2016, 16, 790. [Google Scholar] [CrossRef]
- Bies, A.J.; Wekselblatt, J.; Boydston, C.R.; Taylor, R.P.; Sereno, M.E. The effects of visual scene complexity on human visual cortex. In Proceedings of the 2015 Neuroscience Meeting, Chicago, IL, USA, 19–23 October 2019; Society for Neuroscience: Chicago, IL, USA; Volume 21. [Google Scholar]
- Taylor, R.P.; Martin, T.P.; Montgomery, R.D.; Smith, J.H.; Micolich, A.P.; Boydston, C.; Scannell, B.C.; Fairbanks, M.S.; Spehar, B. Seeing shapes in seemingly random spatial patterns: Fractal analysis of Rorschach inkblots. PLoS ONE 2017, 12, e0171289. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.P. Splashdown. New Sci. 1998, 2144, 30–31. [Google Scholar]
- Aks, D.; Sprott, J. Quantifying aesthetic preference for chaotic patterns. Empir. Stud. Arts 1996, 14, 1–16. [Google Scholar] [CrossRef]
- Robles, K.; Liaw, N.; Taylor, R.P.; Baldwin, D.; Sereno, M.E. A Shaded Fractal Aesthetic Across Development. Humanit. Soc. Sci. Commun. 2020, 7, 158. [Google Scholar] [CrossRef]
- Billock, V.A. Neural acclimation to 1/f spatial frequency spectra in natural images transduced by human visual system. Physical D 2000, 137, 379. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Purcell, T.; Taylor, R.P. Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. J. Environ. Psychol. 2004, 24, 247–255. [Google Scholar] [CrossRef]
- Taylor, R.P. Reduction of physiological stress using fractal art and architecture. Leonardo 2006, 39, 245–251. [Google Scholar] [CrossRef]
- Taylor, R.P.; Sprott, J.C. Biophilic fractals and the visual journey of organic Screen-savers. J. Non-Linear Dyn. Psychol. Life Sci. 2008, 12, 117–129. [Google Scholar]
- Abboushi, B.; Elzeyadi, I.; Taylor, R.P.; Sereno, M.E. Fractals in Architecture: The Visual Interest and Mood Response to Projected Fractal Light Patterns in Interior Spaces. J. Environ. Psychol. 2018, 61, 57–70. [Google Scholar] [CrossRef]
- Stamps, A.E. Fractals, skylines, nature and beauty. Landsc. Urban Plan 2002, 60, 163–184. [Google Scholar] [CrossRef]
- Pyankova, S.D.; Chertkova, Y.D.; Scobeyeva, V.A.; Chertkova, E.R. Influence of Genetic Factors on Perception of Self-similar Objects. Psychol. Subculture Phenomenol. Contemp. Tendencies Dev. 2019, 1, 530–537. [Google Scholar] [CrossRef]
- Richards, R. A new aesthetic for environmental awareness: Chaos theory, the beauty of nature, and our broader humanistic identity. J. Humanist. Psychol. 2001, 41, 59–95. [Google Scholar] [CrossRef]
- Street, N.; Forsythe, A.; Reilly, R.G.; Taylor, R.P.; Boydston, C.; Helmy, M.S. A complex story: Universal preference vs. individual differences shaping aesthetic response to fractals patterns? Front. Hum. Neurosci. 2016, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Roe, E.; Bies, A.J.; Watterson, W.J.; Montgomery, R.D.; Boydston, C.R.; Sereno, M.E.; Taylor, R.P. Fractal Solar Cells: A Marriage between Aesthetic and Electrical Performance. PLoS ONE 2020, 15, e0229945. [Google Scholar] [CrossRef] [Green Version]
- Abboushi, B.; Elzeyadi, I.; Van Den Wymelenberg, B.; Taylor, R.P.; Sereno, M.E.; Jacobsen, G. Investigating Visual Comfort, Visual Interest of Sunlight Patterns and View Quality Under Different Window Conditions in an Open Plan Office. J. Illum. Eng. Soc. 2020, 17, 321–337. [Google Scholar] [CrossRef]
- Boon, J.P.; Casti, J.; Taylor, R.P. Artistic Forms and Complexity. J. Nonlinear Dyn. Psychol. Life Sci. 2011, 15, 265–283. [Google Scholar]
- Viengkham, C.; Isherwood, Z.; Spehar, B. Fractal Scaling Properties as Aesthetic Primitives in Vision and Touch. Axiomathes 2019. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.P. The Potential of Biophilic Fractal Designs to Promote Health and Performance: A Review of Experiments and Applications. J. Sustain. 2021, 13, 823. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Laike, T.; Taylor, R.P.; Küller, M.; Küller, R.; Martin, T.P. Investigation of EEG response to fractal patterns. Percept 2008, 37, 1488–1494. [Google Scholar] [CrossRef]
- Barron, F.; Welsh, G.S. Artistic perception as a possible factor in personality style: Its measurement by a figure preference test. J. Psychol. 1952, 33, 199–203. [Google Scholar] [CrossRef]
- Child, I.L. Personal preferences as an expression of aesthetic sensitivity. J. Personal. 1962, 30, 496–512. [Google Scholar] [CrossRef]
- Goetz, K.O.; Lynn, R.; Borisy, A.R.; Eysenck, H.J. A new visual aesthetic sensitivity test: I. Construction and psychometric properties. Percept. Mot. Ski. 1979, 49, 795–802. [Google Scholar] [CrossRef]
- Wilson, A.; Chatterjee, A. The assessment of preference for balance: Introducing a new test. Empir. Stud. Arts 2005, 23, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Pearce, M.T.; Zaidel, D.W.; Vartanian, O.; Skov, M.; Leder, H.; Chatterjee, A.; Nadal, M. Neuroaesthetics: The cognitive neuroscience of aesthetic experience. Perspect. Psychol. Sci. 2016, 11, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Fechner, G.T. Vorschule der Ästhetik; Breitkopf und Härtel: Leipzig, Germany, 1876. [Google Scholar]
- Berlyne, D.E. Aesthetics and Psychobiology; Appleton-Century-Crofts: New York, NY, USA, 1974. [Google Scholar]
- Berlyne, D.E. (Ed.) Studies in the New Experimental Aesthetics: Steps Towards an Objective Psychology of Aesthetic Appreciation; Hemisphere Publishing Corporation: Washington DC., USA, 1974. [Google Scholar]
- Reber, R.; Schwarz, N.; Winkielman, P. Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personal. Soc. Psychol. Rev. 2004, 8, 364–382. [Google Scholar] [CrossRef] [Green Version]
- Brielmann, A.A.; Dayan, P. Introducing a computational model of aesthetic value. Psychol. Rev. 2021; in press. [Google Scholar]
- Armstrong, T.; Detweiler-Bedell, B. Beauty as an emotion: The exhilarating prospect of mastering a challenging world. Rev. Gen. Psychol. 2008, 12, 305–329. [Google Scholar] [CrossRef] [Green Version]
- Gallese, V.; Freedberg, D. Mirror and canonical neurons are crucial elements in esthetic response. Trends Cogn. Sci. 2007, 11, 411. [Google Scholar] [CrossRef]
- Chatterjee, A.; Vartanian, O. Neuroaesthetics. Trends Cogn. Sci. 2014, 18, 370–375. [Google Scholar] [CrossRef]
- Pelowski, M.; Markey, P.S.; Forster, M.; Gerger, G.; Leder, H. Move me, astonish me delight my eyes and brain: The Vienna integrated model of top-down and bottom-up processes in art perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates. Phys. Life Rev. 2017, 21, 80–125. [Google Scholar] [CrossRef]
- Balling, J.D.; Falk, J.H. Development of visual preference for natural environments. Environ. Behav. 1982, 14, 5–28. [Google Scholar] [CrossRef]
- Kaplan, S. Aesthetics, affect, and cognition. Environ. Behav. 1987, 19, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Kirk, U.; Skov, M.; Christensen, M.S.; Nygaard, N. Brain correlates of aesthetic expertise: A parametric fMRI study. Brain Cogn. 2009, 69, 306315. [Google Scholar] [CrossRef] [PubMed]
- Reimann, M.; Zaichkowsky, J.; Neuhaus, C.; Bender, T.; Weber, B. Aesthetic package design: A behavioral, neural, and psychological investigation. J. Consum. Psychol. 2010, 20, 431–441. [Google Scholar] [CrossRef]
- Van der Laan, L.N.; De Ridder, D.T.D.; Viergever, M.A.; Smeets, P.A.M. Appearance Matters: Neural Correlates of Food Choice and Packaging Aesthetics. PLoS ONE 2012, 7, e41738. [Google Scholar] [CrossRef] [Green Version]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Impact of contour on aesthetic judgments and approach avoidance decisions in architecture. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 2), 10446–10453. [Google Scholar] [CrossRef] [Green Version]
- Kasprisin, R. Urban Design: The Composition of Complexity; Routledge: New York, NY, USA, 2011. [Google Scholar]
- Santayana, G. The Sense of Beauty: Being the Outline of Aesthetic Theory; Charles Scribner’s Sons: New York, NY, USA, 1896; p. 19. [Google Scholar]
- Burke, E. A Philosophical Enquiry into the Origin of our Ideas of the Sublime and the Beautiful; Dodsley: London, UK, 1757. [Google Scholar]
- Dewey, J. Art as Experience; Allen & Unwin: London, UK, 1934. [Google Scholar]
- Shusterman, R. The End of Aesthetic Experience. J. Aesthet. Art Crit. 1997, 55, 29–41. [Google Scholar] [CrossRef]
- Ishizu, T.; Zeki, S. Toward a Brain-Based Theory of Beauty. PLoS ONE 2011, 6, e21852. [Google Scholar] [CrossRef] [Green Version]
- Vessel, E.A.; Maurer, N.; Denker, A.H.; Starr, G.G. Stronger shared taste for natural aesthetic domains than for artifacts of human culture. Cognition 2018, 179, 121–131. [Google Scholar] [CrossRef]
- Brielmann, A.A.; Pelli, D.G. Intense beauty requires intense pleasure. Front. Psychol. 2019, 10, 2420. [Google Scholar] [CrossRef] [Green Version]
- Bruce Goldstein, E. Sensation and Perception, 8th ed.; Cengage Learning: Belmont, CA, USA, 2009; pp. 5–7. [Google Scholar]
- Gutierrez, K. Studies Confirm the Power of Visuals in eLearning. Shift: Disruptive eLearning. Available online: www.shiftelearning.com/blog/bid/350326/studies-confirm-the-power-of-visuals-in-elearning (accessed on 8 July 2014).
- Gregory, R. Perception. In The Oxford Companion to the Mind; Richard, L., Gregory, R., Zangwill, O.L., Eds.; Oxford University Press: Oxford, UK, 1987; pp. 598–601. [Google Scholar]
- Douglas, A. Bernstein. In Essentials of Psychology; Cengage Learning: Belmont, CA, USA, 2010; pp. 123–124. [Google Scholar]
- Zhang, W.; He, X.; Lai, S.; Wan, J.; Lai, S.; Zhao, X.; Li, D. Neural Substrates of Embodied Natural Beauty and Social Endowed Beauty: An fMRI Study. Sci. Rep. 2017, 7, 7125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeki, S. The Macro- and Micro- Worlds in Physics and Perception. Prof. Zeki’s Musings. Available online: http://profzeki.blogspot.com/2016/09/the-macro-and-micro-worlds-in-physics_8.html (accessed on 30 December 2021).
- Zeki, S. The Disunity of Consciousness. Trends Cogn. Neurosci. 2003, 7, 214–218. [Google Scholar] [CrossRef]
- Zeki, S. “Multiplexing” cells of the visual cortex and the timing enigma of the binding problem. Eur. J. Neurosci. 2020, 52, 4684–4694. [Google Scholar] [CrossRef]
- Dijkstra, N.; Bosch, S.E.; van Gerven, M.A.J. Shared neural mechanisms of visual perception and imagery. Trends Cogn. Sci. 2019, 23, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salti, M.; Monto, S.; Charles, L.; King, J.; Parkkonen, L.; Dehaene, S. Distinct cortical codes and temporal dynamics for conscious and unconscious percepts. elife 2015, 4, e05652. [Google Scholar] [CrossRef] [PubMed]
- Hermann, K.; Singh, S.; Rosenthal, I.; Pantazis, D.; Conway, B. Temporal dynamics of the neural representation of hue and luminance contrast. bioRxiv 2020, preprint. [Google Scholar] [CrossRef]
- Wutz, A.; Muschter, E.; van Koningsbruggen, M.G.; Weisz, N.; Melcher, D. Temporal integration windows in neural processing and perception aligned to saccadic eye movements. Curr. Biol. 2016, 26, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Nothdurft, H.C. Cued visual selection-a tool to study the dynamics of neural processes in perception. VPL Rep. 2017, 6, 1–24. [Google Scholar]
- Cichy, R.; Kriegeskorte, N.; van den Bosch, J.; Jozwik, K.; Charest, I. Characterizing the spatio-temporal dynamics of behavior-related neural activity during human visual object perception. J. Vis. 2017, 17, 1341. [Google Scholar] [CrossRef]
- Cichy, R.M.; Kriegeskorte, N.; Jozwik, K.M.; van den Bosch, J.J.F.; Charest, I. The spatiotemporal neural dynamics underlying perceived similarity for real-world objects. Neuroimage 2019, 194, 12–24. [Google Scholar] [CrossRef]
- Shakespeare, W. Hamlet. Act 2, Scene 2. Available online: http://shakespeare.mit.edu/hamlet/full.html (accessed on 30 December 2021).
- Suardi, A.; Sotgiu, I.; Costa, T.; Cauda, F.; Rusconi, M. The neural correlates of happiness: A review of PET and fMRI studies using autobiographical recall methods. Cogn. Affect. Behav. Neurosci. 2016, 16, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, D.J.; Brady, N. Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vis. Res. 1997, 37, 3367–3383. [Google Scholar] [CrossRef] [Green Version]
- Knill, D.C.; Field, D.; Kersten, D. Human discrimination of fractal images. J. Opt. Soc. Am. 1990, 77, 1113–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geake, J.; Landini, G. Individual differences in the perception of fractal curves. Fractals 1997, 5, 129–143. [Google Scholar] [CrossRef]
- Mikiten, T.M.; Salingaros, N.; Yu, H.-S. Pavements as Embodiments of Meaning for a Fractal Mind. Nexus Netw. J. 2000, 2, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Salingaros, N. Adaptive Versus Random Complexity. New Des. Ideas 2018, 2, 51–61. [Google Scholar]
- Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Lévy flight search patterns of wandering albatrosses. Nature 1996, 381, 413–415. [Google Scholar] [CrossRef]
- Démuthová, S.; Démuth, A. Evolutionary and Cognitive Aspects of Beauty (Attractiveness). Kaygı 2017, 28, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.P.; Spehar, B.; von Donkelaar, P.; Hagerhall, C.M. Perceptual and physiological responses to Jackson Pollock’s fractals. Front. Hum. Neurosci. 2011, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salingaros, N.A. The biophilic healing index predicts effects of the built environment on our wellbeing. J. Biourbanism. 2019, 8, 13–34. [Google Scholar]
- Gegenfurtner, K.R. The interaction between vision and eye movements. Perception 2016, 45, 1333–1357. [Google Scholar] [CrossRef] [Green Version]
- Gaspelin, N.; Luck, S.J. “Top-down” does not mean “voluntary”. J. Cogn. 2018, 1, 25. [Google Scholar] [CrossRef] [Green Version]
- Rauss, K.; Pourtois, G. What is bottom-up and what is top-down in predictive coding? Front. Psychol. 2013, 4, 276. [Google Scholar] [CrossRef] [Green Version]
- Shea, N. Distinguishing top-down from bottom-up effects. In Perception and Its Modalities; Biggs, S., Matthen, M., Stokes, D., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 73–91. [Google Scholar]
- Salingaros, N.A. Design Methods, Emergence, and Collective Intelligence. Katarxis 2004, 3. Available online: http://fluxusfoundation.com/design-methods-emergence-and-collective-intelligence (accessed on 30 December 2021).
- Jacques, C.; Rossion, B. The speed of individual face categorization. Psychol. Sci. 2006, 17, 485–492. [Google Scholar] [CrossRef]
- Wolfe, J.M.; Võ, M.L.H.; Evans, K.K.; Greene, M.R. Visual search in scenes involves selective and nonselective pathways. Trends Cogn. Sci. 2011, 15, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Mehaffy, M.; Salingaros, N. Symmetry in architecture: Toward an overdue reassessment. Symmetry: Cult. Sci. 2021, 32, 311–343. [Google Scholar] [CrossRef]
- Mallgrave, H.F. The Architect’s Brain: Neuroscience, Creativity, and Architecture; Wiley-Blackwell: New York, NY, USA, 2011. [Google Scholar]
- Mallgrave, H.F. Architecture and Embodiment: The Implications of the New Sciences and Humanities for Design; Routledge: London, UK, 2013. [Google Scholar]
- Robinson, S.; Pallasmaa, J. (Eds.) Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Goldhagen, S.W. Welcome to Your World: How the Built Environment Shapes Our Lives; HarperCollins: New York, NY, USA, 2017. [Google Scholar]
- Hamilton, D.K.; Watkins, D.H. Evidence-Based Design for Multiple Building Types; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Rhea, C.K.; Kiefer, A.W.; Wittstein, M.W.; Leonard, K.B.; MacPherson, R.P.; Wright, W.G.; Haran, F.J. Fractal gait patterns are retained after entrainment to a fractal stimulus. PLoS ONE 2014, 9, e106755. [Google Scholar] [CrossRef] [PubMed]
- Burtan, D.; Burn, J.F.; Leonards, U. Nature benefits revisited: Differences in gait kinematics between nature and urban images disappear when image types are controlled for likeability. PLoS ONE 2021, 16, e0256635. [Google Scholar] [CrossRef]
- Burtan, D.; Joyce, K.; Burn, J.F.; Handy, T.C.; Ho, S.; Leonards, U. The nature effect in motion: Visual exposure to environmental scenes impacts cognitive load and human gait kinematics. R. Soc. Open Sci. 2021, 8, 201100. [Google Scholar] [CrossRef]
- Faust, N.T.; Chatterjee, A.; Christopoulos, G.I. Beauty in the eyes and the hand of the beholder: Eye and hand movements' differential responses to facial attractiveness. J. Exp. Soc. Psychol. 2019, 85, 103884. [Google Scholar] [CrossRef]
- Salingaros, N. Principles of Urban Structure; Sustasis Press: Portland, OR, USA, 2005. [Google Scholar]
- Salingaros, N. Applications of the Golden Mean to Architecture. In Symmetry: Culture and Science; Katona, V., Darvas, G., Eds.; Symmetrion: Budapest, Hungary, 2018; Volume 29, pp. 329–351. [Google Scholar]
- Salingaros, N. A Theory of Architecture; Sustasis Press: Portland, OR, USA, 2006. [Google Scholar]
- Schaffer, L.J. Callistics: The Fractal (Mathematical) Nature of Beauty. Ph.D. Thesis, City University of New York, New York, NY, USA, 1999. [Google Scholar]
- Salingaros, N. Hierarchical Cooperation in Architecture, and the Mathematical Necessity for Ornament. J. Archit. Plan. Res. 2000, 17, 221–235. [Google Scholar]
- Sullivan, L. Ornament in architecture, The Engineering Magazine III: 5 (August 1892). In Kindergarten Chats Other Writings; Wittenborn & Schultz: New York, NY, USA, 1947. [Google Scholar]
- Wilkins, A.J. A physiological basis for visual discomfort: Application in lighting design. Lighting Res. Technol. 2016, 48, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, A.J. Looking at buildings can actually give people headaches. Conversation 2018. Available online: https://www.cnn.com/style/article/why-looking-at-buildings-can-give-people-headaches/index.html (accessed on 30 December 2021).
- Salingaros, N. Symmetry gives meaning to architecture. Symmetry Cult. Sci. 2020, 31, 231–260. [Google Scholar] [CrossRef]
- Salingaros, N. Why Monotonous Repetition is Unsatisfying. Permac. Res. Inst. 2012. Available online: http://permaculture.org.au/2012/01/04/why-monotonous-repetition-is-unsatisfying/ (accessed on 30 December 2021).
- Le, A.T.D.; Payne, J.; Clarke, C.; Kelly, M.A.; Prudenziati, F.; Armsby, E.; Penacchio, O.; Wilkins, A.J. Discomfort from Urban Scenes, Metabolic Consequences. Landsc. Urban Plan 2017, 160, 61. [Google Scholar] [CrossRef] [Green Version]
- Salingaros, N.A. Design should follow human biology and psychology. J. Biourbanism 2018, 7, 25–36. [Google Scholar]
- Coleman, A. Urban design. World Health 1994, 47, 14–15. [Google Scholar]
- Pykett, J.; Osborne, T.; Resch, B. From urban stress to neurourbanism: How should we research city well-being? Ann. Am. Assoc. Geogr. 2020, 110, 1936–1951. [Google Scholar] [CrossRef]
- Amin, A.; Richaud, L. Stress and the ecology of urban experience: Migrant mental lives in central Shanghai. Trans. Inst. Br. Geogr. 2020, 45, 862–876. [Google Scholar] [CrossRef]
- Söderström, O.; Empson, L.A.; Codeluppi, Z.; Söderström, D.; Baumann, P.S.; Conus, P. Unpacking ‘the City’: An experience-based approach to the role of urban living in psychosis. Health Place 2016, 42, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Winz, M. An atmospheric approach to the city-psychosis nexus. Perspectives for researching embodied urban experiences of people diagnosed with schizophrenia. Ambiances. Environ. Sensib. Archit. Et Espace Urbain 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Golembiewski, J. Architecture, the urban environment and severe psychosis: Aetiology. J. Urban Des. Ment. Health 2017, 2, 1–3. [Google Scholar]
- Nghiem, T.P.; Wong, K.L.; Jeevanandam, L.; Chang, C.; Tan, L.Y.; Goh, Y.; Carrasco, L.R. Biodiverse urban forests, happy people: Experimental evidence linking perceived biodiversity, restoration, and emotional wellbeing. Urban For. Urban Green. 2021, 59, 127030. [Google Scholar] [CrossRef]
- Mayen Huerta, C.; Cafagna, G. Snapshot of the Use of Urban Green Spaces in Mexico City during the COVID-19 Pandemic: A Qualitative Study. Int. J. Environ. Res. Public Health 2021, 18, 4304. [Google Scholar] [CrossRef]
- Nawrath, M.; Guenat, S.; Elsey, H.; Dallimer, M. Exploring uncharted territory: Do urban greenspaces support mental health in low-and middle-income countries? Environ. Res. 2020, 16, 110625. [Google Scholar] [CrossRef] [PubMed]
- Cooley, S.J.; Robertson, N.; Jones, C.R.; Scordellis, J.A. “Walk to Wellbeing” in Community Mental Health: Urban and Green Space Walks Provide Transferable Biopsychosocial Benefits. Ecopsychology 2021, 13, 84–95. [Google Scholar] [CrossRef]
- Baur, J. Campus community gardens and student health: A case study of a campus garden and student well-being. J. Am. Coll. Health 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Callaghan, A.; McCombe, G.; Harrold, A.; McMeel, C.; Mills, G.; Moore-Cherry, N.; Cullen, W. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 2021, 30, 179–193. [Google Scholar] [CrossRef]
- Samuelsson, K.; Barthel, S.; Colding, J.; Macassa, G.; Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. OSF Prepr. 2020. [Google Scholar] [CrossRef]
- Roe, J.; McCay, L. Restorative Cities: Urban Design for Mental Health and Wellbeing; Bloomsbury Publishing: London, UK, 2021. [Google Scholar]
- Elsadek, M.; Liu, B.; Xie, J. Window view and relaxation: Viewing green space from a high-rise estate improves urban dwellers’ wellbeing. Urban For. Urban Green. 2020, 55, 126846. [Google Scholar] [CrossRef]
- Piga, B.; Morello, E. Environmental design studies on perception and simulation: An urban design approach. Ambiances. Environ. Sensib. Archit. Espace Urbain 2015, 1, 968. [Google Scholar] [CrossRef] [Green Version]
- Piga, B.E. Experiential-Walk: Experiencing and Representing the City for Urban Design Purposes. In Experiential Walks for Urban Design; Springer: Cham, Switzerland, 2021; pp. 187–206. [Google Scholar]
- AlWaer, H.; Speedie, J.; Cooper, I. Unhealthy Neighbourhood “Syndrome”: A Useful Label for Analysing and Providing Advice on Urban Design Decision-Making? Sustainability 2021, 13, 6232. [Google Scholar] [CrossRef]
- Bostanci, S.H. A Review of Neuroaesthetics Researches Related to Urban Experience. ICOMEP 2016. In Proceedings of the International Congress of Management Economy and Policy, Istanbul, Turkey, 26–27 November 2016; pp. 4037–4050. [Google Scholar]
- Knöll, M.; Neuheuser, K.; Cleff, T.; Rudolph-Cleff, A. A tool to predict perceived urban stress in open public spaces. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 797–813. [Google Scholar] [CrossRef]
- Jackson, L.E. The relationship of urban design to human health and condition. Landsc. Urban Plan. 2003, 64, 191–200. [Google Scholar] [CrossRef]
- McCay, L.; Bremer, I.; Endale, T.; Jannati, M.; Yi, J. Urban design and mental health. Urban Ment. Health 2019, 32, 1–3. [Google Scholar]
- Christofi, M.; Katsaros, M.; Kotsopoulos, S.D. Form follows brain function: A computational mapping approach. Procedia Manuf. 2020, 44, 108–115. [Google Scholar] [CrossRef]
- Krokowska, J. Healing architecture: Exploration of mental well-being in an urban context. In Degree Project in Architecture; Lund University: Lund, Sweden, 2021. [Google Scholar]
- Jönsson, J. Urban Refuge-Design for Decreasing Urban Stress in a Dense Environment; Chalmers School of Architecture and Civil Engineering: Stockholm, Sweden, 2020. [Google Scholar]
- Koene, M. Urban Stress: Research into the Reduction of Urban Stress through Urban Design; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Rybarczyk, G.; Ozbil, A.; Andresen, E.; Hayes, Z. Physiological responses to urban design during bicycling: A naturalistic investigation. Transp. Res. Part F Traffic Psychol. Behav. 2020, 68, 79–93. [Google Scholar] [CrossRef]
- Coburn, A.; Vartanian, O.; Kenett, Y.N.; Nadal, M.; Hartung, F.; Hayn-Leichsenring, G.U.; Navarrete, G.; González-Mora, J.L.; Chatterjee, A. Psychological and neural responses to architectural interiors. Cortex 2020, 126, 217–241. [Google Scholar] [CrossRef]
- Hayles, C.; Aranda-Mena, G. Well-being in vertical cities: Beyond the aesthetics of nature. In Proceedings of the International Conference of the Architectural Science Association, Melbourne, Australia, 28 November–1 December 2018; pp. 331–338. [Google Scholar]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, beauty, and the brain: A neuroscience of architectural experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Coburn, A. Buildings, Beauty, and the Brain: Psychological Responses to Architectural Design. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2019. [Google Scholar]
- Salingaros, N.A. Why we need to “grasp” our surroundings: Object affordance and prehension in architecture. J. Archit. Urban. 2017, 41, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, H.; Zeki, S. Neural Correlates of Beauty. J. Neurophysiol. 2004, 91, 1699–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aresta, M.; Salingaros, N.A. The importance of domestic space in the times of COVID-19. Challenges 2021, 12, 27. [Google Scholar] [CrossRef]
- Chatterjee, A.; Coburn, A.; Weinberger, A. The neuroaesthetics of architectural spaces. Cogn. Process. 2021, 22, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.C.; Christopoulos, G.I.; Car, J.; Soh, C.K.; Lu, M. Psycho-biological factors associated with underground spaces: What can the new era of cognitive neuroscience offer to their study? Tunn. Undergr. Space Technol. 2016, 55, 118–134. [Google Scholar] [CrossRef]
- Menezes, K.; de Oliveira-Smith, P.; Woodworth, A.V. (Eds.) Programming for Health and Wellbeing in Architecture; Routledge: London, UK, 2021. [Google Scholar]
- Hadley, M. Hurry Up and Wait: Spatial Strategies for Urban Stress Relief. Master’s Thesis, University of Waterloo, Waterloo, Canada, 2020. [Google Scholar]
- Anzani, A. Reusing Leftovers: Corporeity and Empathy of Places. In Design of the Unfinished; Springer: Cham, Switzerland, 2021; pp. 59–72. [Google Scholar]
- Evangelinos, C.; Tscharaktschiew, S. The Valuation of Aesthetic Preferences and Consequences for Urban Transport Infrastructures. Sustainability 2021, 13, 4977. [Google Scholar] [CrossRef]
- Shemesh, A.; Leisman, G.; Bar, M.; Grobman, Y.J. A neurocognitive study of the emotional impact of geometrical criteria of architectural space. Archit. Sci. Rev. 2021, 23, 1–4. [Google Scholar] [CrossRef]
- Higuera-Trujillo, J.L.; Llinares, C.; Macagno, E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef]
- Sarasso, P.; Neppi-Modona, M.; Sacco, K.; Ronga, I. “Stopping for knowledge”: The sense of beauty in the perception-action cycle. Neurosci. Biobehav. Rev. 2020, 118, 723–738. [Google Scholar] [CrossRef]
- Labaune, O.; Deroche, T.; Teulier, C.; Berret, B. Vigor of reaching, walking, and gazing movements: On the consistency of interindividual differences. J. Neurophysiol. 2020, 123, 234–242. [Google Scholar] [CrossRef]
- Srivastava, A.; Ahmad, O.F.; Pacia, C.P.; Hallett, M.; Lungu, C. The relationship between saccades and locomotion. J. Mov. Disord. 2018, 11, 93. [Google Scholar] [CrossRef]
- Stuart, S.; Galna, B.; Lord, S.; Rochester, L.; Godfrey, A. Quantifying saccades while walking: Validity of a novel velocity-based algorithm for mobile eye tracking. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5739–5742. [Google Scholar]
- Bahill, A.T.; Adler, D.; Stark, L. Most naturally occurring human saccades have magnitudes of 15 degrees or less. Investig. Ophthalmol. Vis. Sci. 1975, 14, 468–469. [Google Scholar]
- Stuart, S.; Hickey, A.; Vitorio, R.; Welman, K.; Foo, S.; Keen, D.; Godfrey, A. Eye-tracker algorithms to detect saccades during static and dynamic tasks: A structured review. Physiol. Meas. 2019, 40, 02TR01. [Google Scholar] [CrossRef]
- Marple-Horvat, D.E.; Gilbey, S.L.; Hollands, M.A. A method for automatic identification of saccades from eye movement recordings. J. Neurosci. Methods 1996, 67, 191–195. [Google Scholar] [CrossRef]
- Stein, N. Analyzing Visual Perception and Predicting Locomotion using Virtual Reality and Eye Tracking. In Proceedings of the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Lisbon, Portugal, 27 March–1 April 2021; pp. 727–728. [Google Scholar]
- Cao, L.; Chen, X.; Haendel, B.F. Overground walking decreases alpha activity and entrains eye movements in humans. Front. Hum. Neurosci. 2020, 14, 561755. [Google Scholar] [CrossRef]
- Jeffery, K. Urban architecture: A cognitive neuroscience perspective. Des. J. 2019, 22, 853–872. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Zhang, X.; Ma, F. How Do Subway Signs Affect Pedestrians’ Wayfinding Behavior through Visual Short-Term Memory? Sustainability 2021, 13, 6866. [Google Scholar] [CrossRef]
- Robinson, T. The Impact of Spatial Boundaries on Wayfinding and Landmark Memory: A Developmental Perspective. Ph.D. Thesis, The University of Alabama, Tuscaloosa, AL, USA, 2020. [Google Scholar]
- O’Connor, M.R. Wayfinding: The Science and Mystery of How Humans Navigate the World; St. Martin’s Press: New York, NY, USA, 2019. [Google Scholar]
- Powers, V.; Mordan, L.; Roberts, D. The Role of Working Memory in Direction Giving and Wayfinding; University Research Symposium, Illinois State University: Normal, IL, USA, 2019. [Google Scholar]
- Afrooz, A.; White, D.; Parolin, B. Effects of active and passive exploration of the built environment on memory during wayfinding. Appl. Geogr. 2018, 101, 68–74. [Google Scholar] [CrossRef]
- Hollander, J.; Foster, V. Brain responses to architecture and planning: A preliminary neuro-assessment of the pedestrian experience in Boston, Massachusetts. Archit. Sci. Rev. 2016, 59, 474–481. [Google Scholar] [CrossRef]
- Buttazzoni, A.; Parker, A.; Minaker, L. Investigating the mental health implications of urban environments with neuroscientific methods and mobile technologies: A systematic literature review. Health Place 2021, 70, 102597. [Google Scholar] [CrossRef]
- Christofi, M.; Plastiras, G.; Elia, R.; Tsiourtis, V.; Theocharides, T.; Katsaros, M. Flexible Cities: A Multisided Spatial Application of Tracking Livability of Urban Environment. Int. J. Archit. Environ. Eng. 2021, 15, 98–104. [Google Scholar]
- Rudenko, S.; Danilina, N.; Hristov, B. Using a Mobile Eye-Tracking Technology to Explore Pedestrians’ Gaze Distribution on Street Space. E3S Web Conf. 2021, 263, 05015, EDP Sciences. Available online: https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/39/e3sconf_form2021_05015.pdf (accessed on 30 December 2021). [CrossRef]
- Hollander, J.B.; Sussman, A.; Lowitt, P.; Angus, N.; Situ, M. Eye-tracking emulation software: A promising urban design tool. Archit. Sci. Rev. 2021, 64, 383–393. [Google Scholar] [CrossRef]
- Sussman, A.; Ward, J.M. How Biometric Software is Changing How We Understand Architecture—And Ourselves. Common Edge 2021. Available online: https://commonedge.org/how-biometric-software-is-changing-how-we-understand-architecture-and-ourselves (accessed on 5 January 2022). [CrossRef]
- Sussman, A.; Ward, J. Eye-tracking Boston City Hall to better understand human perception and the architectural experience. New Des. Ideas 2019, 3, 53–59. [Google Scholar]
- Lee, J.H.; Ostwald, M.J. Fractal Dimension Calculation and Visual Attention Simulation: Assessing the Visual Character of an Architectural Façade. Buildings 2021, 11, 163. [Google Scholar] [CrossRef]
- Hollander, J.B.; Sussman, A. (Eds.) Urban Experience and Design: Contemporary Perspectives on Improving the Public Realm; Routledge: London, UK, 2020. [Google Scholar]
- Gehl, J. Cities for People; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Nanda, U.; Zhu, X.; Jansen, B.H. Image and emotion: From outcomes to brain behavior. HERD Health Environ. Res. Des. J. 2012, 5, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Ergan, S.; Fisher-Gewirtzman, D.; Curtis, C. Quantifying the Impact of Urban Form on Human Experience: Experiment Using Virtual Environments and Electroencephalogram. J. Comput. Civ. Eng. 2021, 35, 04021004. [Google Scholar] [CrossRef]
- Lisińska-Kuśnierz, M.; Krupa, M. Suitability of eye tracking in assessing the visual perception of architecture—A case study concerning selected projects located in Cologne. Buildings 2020, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Uttley, J.; Simpson, J.; Qasem, H. Eye-Tracking in the real world: Insights about the urban environment. In Handbook of Research on Perception-Driven Approaches to Urban Assessment and Design; Hershey, P.A., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 368–396. [Google Scholar]
- Mantuano, A.; Bernardi, S.; Rupi, F. Cyclist gaze behavior in urban space: An eye-tracking experiment on the bicycle network of Bologna. Case Stud. Transp. Policy 2017, 5, 408–416. [Google Scholar] [CrossRef]
- Franěk, M.; Petružálek, J.; Šefara, D. Eye movements in viewing urban images and natural images in diverse vegetation periods. Urban For. Urban Green. 2019, 46, 126477. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Duchowski, A.T.; Antrop, M.; Van Eetvelde, V. Investigating the visual exploration of the rural-urban gradient using eye-tracking. Spat. Cogn. Comput. 2017, 17, 65–88. [Google Scholar] [CrossRef]
- Noland, R.B.; Weiner, M.D.; Gao, D.; Cook, M.P.; Nelessen, A. Eye-tracking technology, visual preference surveys, and urban design: Preliminary evidence of an effective methodology. J. Urban. Int. Res. Placemaking Urban Sustain. 2017, 10, 98–110. [Google Scholar] [CrossRef]
- Jam, F.; Azemati, H.R.; Ghanbaran, A.; Esmaily, J.; Ebrahimpour, R. The role of expertise in visual exploration and aesthetic judgment of residential building façades: An eye-tracking study. Psychol. Aesthet. Creat. Arts, 2022; in press. [Google Scholar] [CrossRef]
- Simpson, J. Three-dimensional gaze projection heat-mapping of outdoor mobile eye-tracking data. Interdiscip. J. Signage Wayfinding 2021, 5, 62–82. Available online: https://eprints.whiterose.ac.uk/172905/1/Simpson%2C%202021.pdf (accessed on 30 December 2021). [CrossRef]
- Simpson, J.; Freeth, M.; Simpson, K.J.; Thwaites, K. Visual engagement with urban street edges: Insights using mobile eye-tracking. J. Urban. Int. Res. Placemaking Urban Sustain. 2019, 12, 259–278. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Jing, F.; Gao, J.; Ma, J.; Shao, G.; Noel, S. An evaluation of urban green space in Shanghai, China, using eye tracking. Urban For. Urban Green. 2020, 56, 126903. [Google Scholar] [CrossRef]
- Simpson, J.; Thwaites, K.; Freeth, M. Understanding Visual Engagement with Urban Street Edges along Non-Pedestrianised and Pedestrianised Streets Using Mobile Eye-Tracking. Sustainability 2019, 11, 4251. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yang, W.; Wang, D.; He, Y. Insights into Public Visual Behaviors through Eye-Tracking Tests: A Study Based on National Park System Pilot Area Landscapes. Land 2021, 10, 497. [Google Scholar] [CrossRef]
- Hollander, J.B.; Purdy, A.; Wiley, A.; Foster, V.; Jacob, R.J.; Taylor, H.A.; Brunyé, T.T. Seeing the city: Using eye-tracking technology to explore cognitive responses to the built environment. J. Urban. Int. Res. Placemaking Urban Sustain. 2018, 12, 156–171. [Google Scholar] [CrossRef]
- Rusnak, M.A.; Rabiega, M. The Potential of Using an Eye Tracker in Architectural Education: Three Perspectives for Ordinary Users, Students and Lecturers. Buildings 2021, 11, 245. [Google Scholar] [CrossRef]
- De la Fuente Suárez, L.A. Subjective experience and visual attention to a historic building: A real-world eye-tracking study. Front. Archit. Res. 2020, 9, 774–804. [Google Scholar] [CrossRef]
- de Winter, J.; Bazilinskyy, P.; Wesdorp, D.; de Vlam, V.; Hopmans, B.; Visscher, J.; Dodou, D. How do pedestrians distribute their visual attention when walking through a parking garage? An eye-tracking study. Ergonomics 2021, 64, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Pashkevich, A.; Szarata, A.; Burghardt, T.E.; Jaremski, R.; Šucha, M. Operation of Public Transportation Ticket Vending Machine in Kraków, Poland: An Eye Tracking Study. Sustainability 2021, 13, 7921. [Google Scholar] [CrossRef]
- Shang, T.; Lu, H.; Wu, P.; Wei, Y. Eye-tracking evaluation of exit advance guide signs in highway tunnels in familiar and unfamiliar drivers. Int. J. Environ. Res. Public Health 2021, 18, 6820. [Google Scholar] [CrossRef]
- Wang, Z.; Lonsdale, M.D.; Cheung, V. An eye-tracking study examining information search in transit maps: Using China’s high-speed railway map as a case study. Inf. Des. J. 2021, 26, 53–72. [Google Scholar] [CrossRef]
- Shipley, N.J. Setting Our Sights on Vision: A Rationale and Research Agenda for Integrating Eye-Tracking into Leisure Research. Leis. Sci. 2021, 20, 1–22. [Google Scholar] [CrossRef]
- Krupina, A.A.; Bespalov, V.V.; Kovaleva, E.Y.; Bondarenko, E.A. Eye tracking in urban visual environment. Constr. Unique Build. Struct. 2017, 1, 47–56. [Google Scholar]
- Kollert, A.; Rutzinger, M.; Bremer, M.; Kaufmann, K.; Bork-Hüffer, T. Mapping of 3D eye-tracking in urban outdoor environments. ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2021, 4, 201–208. [Google Scholar]
- Boeing, G. Measuring the complexity of urban form and design. Urban Des. Int. 2018, 23, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Vainio, T.; Karppi, I.; Jokinen, A.; Leino, H. Towards Novel Urban Planning Methods-Using Eye-tracking Systems to Understand Human Attention in Urban Environments. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–8. [Google Scholar]
- Hollander, J.B.; Anderson, E.C. The impact of urban façade quality on affective feelings. Archnet-IJAR Int. J. Archit. Res. 2020, 14, 219–232. [Google Scholar] [CrossRef]
- Karakas, T.; Yildiz, D. Exploring the influence of the built environment on human experience through a neuroscience approach: A systematic review. Front. Archit. Res. 2020, 9, 236–247. [Google Scholar] [CrossRef]
- Olsson, P. Green City Branding–How People Respond to the Built Environment. Master’s Thesis, University of Gothenburg, Gothenburg, Sweden, 2020. [Google Scholar]
- Tang, M. Analysis of signage using eye-tracking technology. Interdiscip. J. Signage Wayfinding 2020, 4, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Hollander, J.B.; Levering, A.P.; Lynch, L.; Foster, V.; Perlo, S.; Jacob, R.J.; Taylor, H.A.; Brunyé, T.T. Cognitive responses to urban environments: Behavioral responses in lab and field conditions. Urban Des. Int. 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Hollander, J.B.; Sussman, A.; Purdy Levering, A.; Foster-Karim, C. Using eye-tracking to understand human responses to traditional neighborhood designs. Plan. Pract. Res. 2020, 35, 485–509. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brielmann, A.A.; Buras, N.H.; Salingaros, N.A.; Taylor, R.P. What Happens in Your Brain When You Walk Down the Street? Implications of Architectural Proportions, Biophilia, and Fractal Geometry for Urban Science. Urban Sci. 2022, 6, 3. https://doi.org/10.3390/urbansci6010003
Brielmann AA, Buras NH, Salingaros NA, Taylor RP. What Happens in Your Brain When You Walk Down the Street? Implications of Architectural Proportions, Biophilia, and Fractal Geometry for Urban Science. Urban Science. 2022; 6(1):3. https://doi.org/10.3390/urbansci6010003
Chicago/Turabian StyleBrielmann, Aenne A., Nir H. Buras, Nikos A. Salingaros, and Richard P. Taylor. 2022. "What Happens in Your Brain When You Walk Down the Street? Implications of Architectural Proportions, Biophilia, and Fractal Geometry for Urban Science" Urban Science 6, no. 1: 3. https://doi.org/10.3390/urbansci6010003
APA StyleBrielmann, A. A., Buras, N. H., Salingaros, N. A., & Taylor, R. P. (2022). What Happens in Your Brain When You Walk Down the Street? Implications of Architectural Proportions, Biophilia, and Fractal Geometry for Urban Science. Urban Science, 6(1), 3. https://doi.org/10.3390/urbansci6010003