Spatio-Temporal Dynamics of Urban Vegetation and Climate Impacts on Market Gardening Systems: Insights from NDVI and Participatory Data in Grand Nokoué, Benin
Abstract
1. Introduction
1.1. State of the Art
1.1.1. NDVI and Climate Impacts on Urban Agricultural Systems
1.1.2. Local Perceptions and Adaptation Strategies in Urban Market Gardening Systems: The Contribution of Participatory Approaches
1.2. Justification for the Study
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Sampling Technique and Primary Data Collection
2.4. Data Processing and Analysis
2.4.1. Satellite Data
2.4.2. Primary Data
2.5. Justification of the Methodological Choice
3. Results
3.1. Analysis of Vegetation Cover Dynamics Derived from NDVI
3.1.1. Mapping of Vegetation Cover Density Classes
3.1.2. Interannual Changes in Vegetation Cover Classes Derived from NDVI
3.2. Monthly Dynamics of Urban Vegetation Based on Monthly NDVI
3.3. Perception of Climate Risks by Market Gardeners
3.4. Perception of Risk Impacts
3.5. Adaptation Strategies of Market Gardeners According to Climate Risks and Crop Types
4. Discussion
- Targeted urban greening, particularly around and within production areas, is essential for reducing the fragmentation of vegetation cover, as evidenced by low normalized difference vegetation index (NDVI) values. Developing green corridors and protecting residual agricultural areas would mitigate the urban heat island effect, which is particularly pronounced in Cotonou.
- Strong perceptions of flooding highlight the need to improve local drainage, clean gutters regularly, and create small retention basins inside or near market gardening sites. This infrastructure would reduce the temporary abandonment of plots, a dominant strategy identified in the study;
- In light of recurring water shortages, it is essential to develop water-efficient irrigation systems suited to small urban plots, such as micro-sprinklers, rainwater harvesting, and optimization of existing boreholes. Promoting drought- and flood-resistant varieties would also help maintain productivity.
- The results show that agroecological practices such as agroforestry, crop rotation, and intercropping mitigate the effects of heat waves. Reinforcing these practices as nature-based solutions should be encouraged in all municipalities in Grand Nokoué. Finally,
- The implementation of targeted training programs for market gardeners that incorporate water management, climate change adaptation, NDVI interpretation, and participatory monitoring would facilitate the connection between biophysical data and local experiences. This would improve decision-making and urban planning.
5. Limitations of the Study and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EOSDIS | Earth Observing System Data and Information System |
| GEE | Google Earth Engine |
| IPCC | Intergovernmental Panel on Climate Change |
| INStaD | Institut National de la Statistique et de la Démographie |
| LST | land surface temperature |
| MOD | Moderate |
| MODIS | Moderate Resolution Imaging Spectroradiometer |
| NAP | National Adaptation Plan |
| NASA | National Aeronautics and Space Administration |
| NDCs | Nationally Determined Contributions |
| NDVI | Normalized Difference Vegetation Index |
| ODK | Open Data Kit |
| PADMAR | Projet d’Appui au Développement du Maraîchage au Bénin |
| TIFF | Tagged Image File Format |
References
- C40 Cities. Intégrer L’adaptation au Changement Climatique: Un Guide Pour les Urbanistes et les Professionnels de L’adaptation; Global Platform for Sustainable Cities: Washington, DC, USA, 2021; p. 66. Available online: https://www.thegpsc.org/sites/gpsc/files/integrating_climate_adaptation_toolkit_c40_gpsc_fr.pdf (accessed on 4 September 2024).
- Egerer, M.; Lin, B.B.; Diekmann, L. Nature Connection, Experience and Policy Encourage and Maintain Adaptation to Drought in Urban Agriculture. Environ. Res. Commun. 2020, 2, 041004. [Google Scholar] [CrossRef]
- Egerer, M.H.; Lin, B.B.; Kendal, D. Temperature Variability Differs in Urban Agroecosystems across Two Metropolitan Regions. Climate 2019, 7, 50. [Google Scholar] [CrossRef]
- Zoran, M.A.; Dida, A.I. Remote Sensing of Climate Changes Effects on Urban Green Biophysical Variables; Michel, U., Schulz, K., Ehlers, M., Nikolakopoulos, K.G., Civco, D., Eds.; Edinburgh, UK, 2016; p. 100051K. [Google Scholar]
- Wang, Y.; Mao, J.; Brelsford, C.M.; Ricciuto, D.M.; Yuan, F.; Shi, X.; Rastogi, D.; Mayes, M.M.; Kao, S.-C.; Warren, J.M.; et al. Thermal, Water, and Land Cover Factors Led to Contrasting Urban and Rural Vegetation Resilience to Extreme Hot Months. PNAS Nexus 2024, 3, pgae147. [Google Scholar] [CrossRef]
- Love, N.L.R.; Berkelhammer, M.; Tovar, E.; Romy, S.; Wilson, M.D.; Nunez Mir, G.C. Not All Green Is Equal: Growth Form Is a Key Driver of Urban Vegetation Sensitivity to Climate in Chicago. Remote Sens. 2025, 17, 2919. [Google Scholar] [CrossRef]
- Knapp, L.; Veen, E.; Renting, H.; Wiskerke, J.S.C.; Groot, J.C.J. Vulnerability Analysis of Urban Agriculture Projects: A Case Study of Community and Entrepreneurial Gardens in the Netherlands and Switzerland. Urban Agric. Reg. Food Syst. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Mensah, J.K. Urban Agriculture, Local Economic Development and Climate Change: Conceptual Linkages. Int. J. Urban. Sustain. Dev. 2023, 15, 141–151. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecología Urbana: Diseño de Granjas Urbanas Ricas En Biodiversidad, Productivas y Resilientes. Agro Sur 2018, 46, 49–60. [Google Scholar] [CrossRef]
- Grafius, D.R.; Edmondson, J.L.; Norton, B.A.; Clark, R.; Mears, M.; Leake, J.R.; Corstanje, R.; Harris, J.A.; Warren, P.H. Estimating Food Production in an Urban Landscape. Sci. Rep. 2020, 10, 5141. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrod, C.; Gruda, N. Urban Vegetable for Food Security in Cities. A Review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Athearn, K.; Wooten, H.; Felter, L.; Campbell, C.G.; Ryals, J.E.; Lollar, M.C.; Popenoe, J.; Bravo, L.; Duncan, L.; Court, C.; et al. Costs and Benefits of Vegetable Gardening. EDIS 2021, 2021, 10. [Google Scholar] [CrossRef]
- Sanchez, S.; Funderburk, K.; Reznicek, E.; Parmer, S. How Does Your Garden Grow? Development of a Calculator to Evaluate the Economic and Dietary Impact of Edible Gardens. J. Ext. 2024, 62, 1–5. [Google Scholar] [CrossRef]
- Tomatis, F.; Egerer, M.; Correa−Guimaraes, A.; Navas−Gracia, L.M. Urban Gardening in a Changing Climate: A Review of Effects, Responses and Adaptation Capacities for Cities. Agriculture 2023, 13, 502. [Google Scholar] [CrossRef]
- Yanogo, P.I. Rainfall Variability and Changes in Market Gardening Systems: A Case Study in Réo (Mid−West Region of Burkina Faso). Present Environ. Sustain. Dev. 2024, 17, 213–228. [Google Scholar] [CrossRef]
- Ahouangan, B.S.C.M.; Koura, B.I.; Lesse, A.D.P.; Ahoyo, C.C.; Toyi, S.M.; Vissin, E.W.; Houinato, M.R.B. Typology Analysis and Adaptive Capacity of Commercial Gardening Farmers to Climate Change in Peri−Urban Areas along the Coastal Area of Benin (West Africa). Front. Sustain. Food Syst. 2024, 8, 1356665. [Google Scholar] [CrossRef]
- Kouévi, T.A.; Adé, C.K.; N’Danikou, S.; Mongbo, R.L.; Komlan, C.; Dagnon, G.N.; Djossouvi, C.O.E.A.; Legba, E.C.; Achigan-Dako, E.G. Preferences of market gardeners for traditional vegetables and associated factors in urban areas of southern Benin. Future Food J. Food Agric. Soc. 2023, 11, 5. [Google Scholar] [CrossRef]
- Azagoun, V.V.A.; Komi, K.; Badou, D.F.; Vissin, E.W.; Klassou, K.S. Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities. Geographies 2025, 5, 46. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Lin, B.B.; Egerer, M.H. Global Social and Environmental Change Drives the Management and Delivery of Ecosystem Services from Urban Gardens: A Case Study from Central Coast, California. Glob. Environ. Chang. 2020, 60, 102006. [Google Scholar] [CrossRef]
- Reynolds, H.L.; Brandt, L.; Fischer, B.C.; Hardiman, B.S.; Moxley, D.J.; Sandweiss, E.; Speer, J.H.; Fei, S. Implications of Climate Change for Managing Urban Green Infrastructure: An Indiana, US Case Study. Clim. Chang. 2020, 163, 1967–1984. [Google Scholar] [CrossRef]
- Egerer, M.H.; Lin, B.B.; Threlfall, C.G.; Kendal, D. Temperature Variability Influences Urban Garden Plant Richness and Gardener Water Use Behavior, but Not Planting Decisions. Sci. Total Environ. 2019, 646, 111–120. [Google Scholar] [CrossRef]
- Ouikoun, G.C.; Bouka, C.E.; Lawson−Evi, P.; Dossou, J.; Eklu−Gadégbeku, K. Caractérisation Des Systèmes de Cultures Des Sites Maraîchers de Houéyiho, de Sèmè−Kpodji et de Grand−Popo Au Sud−Bénin. Eur. Sci. J. ESJ 2019, 15. [Google Scholar] [CrossRef]
- Salokhiddinov, A.; Boirov, R.; Ismailov, M.; Mamatov, S.; Khakimova, P.; Rakhmatullaeva, M. Climate Change Effects on Irrigated Agriculture: Perspectives from Agricultural Producers in Eastern Uzbekistan. IOP Conf. Ser. Earth Environ. Sci. 2020, 612, 012058. [Google Scholar] [CrossRef]
- Jin, K.; Jin, Y.; Li, C.; Li, L. Spatial and Temporal Dynamics in Vegetation Greenness and Its Response to Climate Change in the Tarim River Basin, China. ISPRS Int. J. Geo−Inf. 2024, 13, 304. [Google Scholar] [CrossRef]
- Nasiri, V.; Rahmanian, S.; Aslani, Z.H.; Maftei, C.; Vaseashta, A. Spatial Trend Analysis of Vegetation Dynamics and Their Responses to Climate Change on Black Sea Coasts, Romania from 2000 to 2021. In Advances in Environmental Engineering and Green Technologies; Maftei, C., Muntean, R., Vaseashta, A., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 162–184. ISBN 978-1-6684-8771-6. [Google Scholar]
- Guo, G.; Zou, X.; Zhang, Y. The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022. Land 2025, 14, 1559. [Google Scholar] [CrossRef]
- Kisvarga, S.; Horotán, K.; Wani, M.A.; Orlóci, L. Plant Responses to Global Climate Change and Urbanization: Implications for Sustainable Urban Landscapes. Horticulturae 2023, 9, 1051. [Google Scholar] [CrossRef]
- Bismark, M.−B.; Agyare Wilson, A.; Mexoese, N.; Kojo Samuel, A. Comparing Farmers’ Perceptions of Climate Variability with Meteorological and Remote Sensing Data, Implications for Climate Smart Agriculture Technologies in Ghana. Am. J. Environ. Sci. Eng. 2021, 5, 104. [Google Scholar] [CrossRef]
- Magidi, J.; Ahmed, F. Monitoring Vegetation Phenology Using MODIS NDVI 250m in the City of Tshwane, South Africa. S. Afr. J. Geomat. 2022, 11, 176–189. [Google Scholar] [CrossRef]
- Agustiyara, A.; Mutiarin, D.; Nurmandi, A.; Kasiwi, A.N.; Ikhwali, M.F. Mapping Urban Green Spaces in Indonesian Cities Using Remote Sensing Analysis. Urban Sci. 2025, 9, 23. [Google Scholar] [CrossRef]
- Martins, C.F.V.; Guerra, F.C.; Ferreira, A.T.D.S.; Gonçalves, R.D. Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census. Earth 2025, 6, 87. [Google Scholar] [CrossRef]
- Łochowski, P.; Ciężkowski, W.; Chormański, J. Green Tracks in Urban Landscapes: Optimizing Vegetation Health Assessment with UAS NDVI. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 4856–4859. [Google Scholar]
- Gbedahi, O.L.C.; Biaou, S.S.H.; Mama, A.; Gouwakinnou, G.N.; Yorou, N.S. Dynamique Du Couvert Végétal à Bassila Au Nord Bénin Pendant et Après La Mise En Œuvre d’un Projet d’aménagement Forestier. Int. J. Biol. Chem. Sci. 2019, 13, 311. [Google Scholar] [CrossRef]
- Toko Issiaka, N.; Zakari, S.; Djaouga, M.; Issifou Moumouni, Y.; Tente, B.A. Cartographie De La Dynamique Spatio−Temporelle Et De La Vulnerabilite Des Unites D’occupation Des Terres Dans Le Parc National Du W (Pnw) Au Benin. Int. J. Progress. Sci. Technol. 2024, 46, 330. [Google Scholar] [CrossRef]
- Gansaonré, R.N.; Zoungrana, B.J.−B.; Yanogo, P.I. Dynamique Du Couvert Végétal à La Périphérie Du Parc W Du Burkina Faso. Belgeo 2020. [Google Scholar] [CrossRef]
- Dossou, J.F.; Li, X.X.; Kang, H.; Boré, A. Impact of Climate Change on the Oueme Basin in Benin. Glob. Ecol. Conserv. 2021, 28, e01692. [Google Scholar] [CrossRef]
- Kouassi, C.J.A.; Qian, C.; Khan, D.; Achille, L.S.; Kebin, Z.; Omifolaji, J.K.; Ya, T.; Yang, X. LAND USE LAND COVER CHANGE MAPPING FROM SENTINEL 1B & 2A IMAGERY USING RANDOM FOREST ALGORITHM IN CÔTE D’IVOIRE. Geod. Cartogr. 2024, 50, 43–59. [Google Scholar] [CrossRef]
- Chen, B. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG−TERM SATELLITE−BASED OBSERVATIONS. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 45–52. [Google Scholar] [CrossRef]
- Mehmood, K.; Anees, S.A.; Muhammad, S.; Hussain, K.; Shahzad, F.; Liu, Q.; Ansari, M.J.; Alharbi, S.A.; Khan, W.R. Analyzing Vegetation Health Dynamics across Seasons and Regions through NDVI and Climatic Variables. Sci. Rep. 2024, 14, 11775. [Google Scholar] [CrossRef]
- Bouskour, S.; Zaggaf, M.H.; Bahatti, L.; Zayrit, S. MODIS−NDVI and Wheat Yield Patterns and Predictions in Taounate, Morocco. Indones. J. Electr. Eng. Comput. Sci. 2025, 37, 648. [Google Scholar] [CrossRef]
- Enebish, B.; Dashkhuu, D.; Renchin, M.; Russell, M.; Singh, P. Impact of Climate on the NDVI of Northern Mongolia. J. Indian. Soc. Remote Sens. 2020, 48, 333–340. [Google Scholar] [CrossRef]
- Vodounou, J.B.K.; Onibon Doubogan, Y. Agriculture Paysanne et Stratégies d’adaptation Au Changement Climatique Au Nord−Bénin. Cybergeo Eur. J. Geogr. 2016, 794. [Google Scholar] [CrossRef]
- Atidegla, S.C.; Koumassi, H.D.; Houssou, E.S. Variabilité Climatique et Production Maraîchère Dans La Plaine Inondable d’Ahomey−Gblon Au Bénin. Int. J. Biol. Chem. Sci. 2018, 11, 2254. [Google Scholar] [CrossRef]
- Ouassa, P.; Atchadé, G.A.A.; Kodja, D.J.; Avahounlin, F.R.; Vissin, E.W. Stratégies d’adaptation Des Producteurs Agricoles Aux Risques Hydroclimatiques Dans Le Bassin Béninois de La Pendjari à l’exutoire de Porga. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 319–324. [Google Scholar] [CrossRef]
- Aguilar Rivera, N. Percepción Remota Como Herramienta de Competitividad de La Agricultura. Rev. Mex. Cienc. Agríc. 2018, 6, 399–405. [Google Scholar] [CrossRef]
- Saley, I.A.; Ganaba, A.; Lawson, N.Z.; Salack, S. Chapitre 1. Vérification de la qualité d’un service climatique pour l’agriculture. In Risques Climatiques et Agriculture en Afrique de l’Ouest; Sultan, B., Bossa, A.Y., Salack, S., Sanon, M., Eds.; IRD Éditions: Marseille, France, 2020; pp. 19–30. ISBN 978-2-7099-2820-5. [Google Scholar]
- Sultan, B.; Bossa, A.Y.; Salack, S.; Sanon, M. Introduction générale. In Risques Climatiques et Agriculture en Afrique de L’Ouest; Sultan, B., Bossa, A.Y., Salack, S., Sanon, M., Eds.; IRD Éditions: Marseille, France, 2020; pp. 11–14. ISBN 978-2-7099-2820-5. [Google Scholar]
- Ministère du Cadre de Vie et du Développement Durable (MCVDD). Plan National D’adaptation aux Changements Climatiques du Bénin (PNA); MCVDD: Cotonou, Benin, 2022; Available online: https://unfccc.int/sites/default/files/resource/PNA_BENIN_2022_0.pdf (accessed on 30 September 2024).
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid (MOD13Q1), Version 6.1; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary−Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Garren, S.T.; Cleathero, B.A. Assessment of Required Sample Sizes for Estimating Proportions. Asian J. Probab. Stat. 2024, 26, 48–56. [Google Scholar] [CrossRef]
- Allarané, N.; Azagoun, V.V.A.; Atchadé, A.J.; Hetcheli, F.; Atela, J. Urban Vulnerability and Adaptation Strategies against Recurrent Climate Risks in Central Africa: Evidence from N’Djaména City (Chad). Urban Sci. 2023, 7, 97. [Google Scholar] [CrossRef]
- Patel, D. Sample Size Estimation in Clinical Trials. Natl. J. Community Med. 2024, 15, 503–508. [Google Scholar] [CrossRef]
- Sztabiński, P.B. The Use of Face−to−Face Interviews in Mixed Mode Design: The Problem of the Achieved Sample. Clov. Spoločnosť 2019, 22, 1–28. [Google Scholar] [CrossRef]
- Muszyński, M.; Jabkowski, P. What Can Interviewer−Collected Paradata Tell About Measurement Quality in Face−to−Face Surveys? Analyzing Response Styles in Six Rounds of the European Social Survey 2023. Available online: https://osf.io/preprints/psyarxiv/byz45_v1 (accessed on 30 September 2024).
- Yang, X.; Huang, X.; Ma, Y.; Li, Y.; Feng, Q.; Liang, T. Development of Long-term Spatiotemporal Continuous NDVI Products for Alpine Grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China. Grassl. Res. 2024, 3, 100–112. [Google Scholar] [CrossRef]
- Ma, Z.; Dong, C.; Lin, K.; Yan, Y.; Luo, J.; Jiang, D.; Chen, X. A Global 250−m Downscaled NDVI Product from 1982 to 2018. Remote Sens. 2022, 14, 3639. [Google Scholar] [CrossRef]
- Hoyer, S.; Hamman, J. Xarray: N−D Labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef]
- Cigerci, H.; Balcik, F.B.; Sekertekin, A.; Kahya, C. Unveiling Istanbul’s City Dynamics: Spatiotemporal Hotspot Analysis of Vegetation, Settlement, and Surface Urban Heat Islands. Sustainability 2024, 16, 5981. [Google Scholar] [CrossRef]
- Hamed, R.; Steinmann, C.B.; Ma, Q.; Balanzategui, D.; Broadman, E.; Lesk, C.; Kornhuber, K. Amplified Agricultural Impacts from Increasingly Sequential Heat Extremes. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar]
- Coronel, A.S.; Feldman, S.R.; Jozami, E.; Facundo, K.; Piacentini, R.D.; Dubbeling, M.; Escobedo, F.J. Effects of Urban Green Areas on Air Temperature in a Medium−Sized Argentinian City. AIMS Environ. Sci. 2015, 2, 803–826. [Google Scholar] [CrossRef]
- Lin, B.B.; Egerer, M.H.; Liere, H.; Jha, S.; Bichier, P.; Philpott, S.M. Local− and Landscape−Scale Land Cover Affects Microclimate and Water Use in Urban Gardens. Sci. Total Environ. 2018, 610–611, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-32584-4. [Google Scholar]
- Monnet, M.; Vignola, R.; Aliotta, Y. Smallholders’ Water Management Decisions in the Face of Water Scarcity from a Socio−Cognitive Perspective, Case Study of Viticulture in Mendoza. Agronomy 2022, 12, 2868. [Google Scholar] [CrossRef]
- Palmisano, T.; Miguel, R.E. Dinámica Multicausal de La Escasez Hídrica. El Caso de Nonogasta, La Rioja, Argentina. Agua Territ. Water Landsc. 2025, 361–376. [Google Scholar] [CrossRef]
- Mohan, C.; Western, A.W.; Jha, M.K.; Wei, Y. Global Assessment of Groundwater Stress Vis−à−Vis Sustainability of Irrigated Food Production. Sustainability 2022, 14, 16896. [Google Scholar] [CrossRef]
- Diallo, M.C.A.; Santos, R.C.; Gomes, E.P.; Machado, C.A.C.; Dias, C.R.A.; Santos, E.C.D.; Padilha, G.A.C.; Belarmino, M.D.; Galiaso, M.; Riffel, A.S.; et al. Challenges of Smart Irrigation Implementation in Water Optimization and Agricultural Sustainability. Contrib. LAS Cienc. Soc. 2024, 17, e13723. [Google Scholar] [CrossRef]
- Xu, D.; Ivanov, V.Y.; Agee, E.; Wang, J. Energy Surplus and an Atmosphere-Land-Surface “Tug of War” Control Future Evapotranspiration. Geophys. Res. Lett. 2023, 50, e2022GL102677. [Google Scholar] [CrossRef]
- Dieye, M.; Dia, D.; Barbier, B.; Sylla, E.H.M.; Sall, M.; Bader, J.C.; Bossa, A.Y.; Sanfo, S.; Fall, C.S. L’agriculture de Décrue En Afrique de l’Ouest et Du Centre: Une Certaine Résilience Face à La Variabilité Climatique et à La Régulation Des Fleuves. In Risques Climatiques et Agriculture en Afrique de L’Ouest; Sultan, B., Bossa, A.Y., Salack, S., Sanon, M., Eds.; IRD Éditions: Marseille, France, 2020; pp. 121–131. ISBN 978-2-7099-2820-5. Available online: https://hal.archives-ouvertes.fr/hal-02547494 (accessed on 30 September 2024).
- Sawadogo, B. Drought Impacts on the Crop Sector and Adaptation Options in Burkina Faso: A Gender−Focused Computable General Equilibrium Analysis. Sustainability 2022, 14, 15637. [Google Scholar] [CrossRef]
- Zongo, B.; Barbier, B.; Diarra, A.; Zorom, M.; Atewamba, C.; Combary, O.S.; Ouédraogo, S.; Toé, P.; Hamma, Y.; Dogot, T. Economic Analysis and Food Security Contribution of Supplemental Irrigation and Farm Ponds: Evidence from Northern Burkina Faso. Agric. Food Secur. 2022, 11, 4. [Google Scholar] [CrossRef]
- Dumba, H.; Danquah, J.A.; Pappinen, A. Rural Farmers’ Approach to Drought Adaptation: Lessons from Crop Farmers in Ghana. In African Handbook of Climate Change Adaptation; Leal Filho, W., Oguge, N., Ayal, D., Adeleke, L., Da Silva, I., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–19. ISBN 978-3-030-42091-8. [Google Scholar]
- Opoku Mensah, S.; Osei-Acheampong, B.; Jacobs, B.; Cunningham, R.; Akoto, A.B. Smallholder Farmers’ Climate Change Adaptation in Ghana: A Systematic Literature Review and Future Directions. J. Environ. Manag. 2025, 384, 125598. [Google Scholar] [CrossRef]
- Miah, S.; Ullah, S.; Siddique, M.H. Heat Waves in Bangladesh: Understanding the Threats and Finding Solutions. Asia Pac. J. Energy Environ. 2022, 9, 89–98. [Google Scholar] [CrossRef]
- Rafique Khan, M.; Abubakar, M.; Tahir, A.; Waqas Dilawar, M.; Muhammad Ali Hassan, H.; Rashid Ahmad, S.; Saif, F.; Umair Chand, M. Escalating Global Threat of Heatwaves and Policy Options for Adaptation and Mitigation. J. Asian Dev. Stud. 2024, 13, 980–995. [Google Scholar] [CrossRef]








| Commune | Population of Market Gardeners | Sample | |
|---|---|---|---|
| Number | Proportion (%) | ||
| Cotonou | 608 | 132 | 36 |
| Ouidah | 322 | 87 | 23 |
| Sèmè-podji | 909 | 150 | 41 |
| Total | 1839 | 369 | 100 |
| Classes | NDVI | Interval | Description Ecological |
|---|---|---|---|
| Class 1 | Very low | ≤0.20 | Degraded areas|Very low vegetation|Low photosynthetic activity. |
| Class 2 | Low | 0.21–0.41 | Low vegetation|Degraded areas. |
| Class 3 | Medium | 0.41–0.61 | Moderate vegetation|Actively growing crops |
| Class 4 | High | 0.61–0.81 | Dense vegetation|High photosynthetic activity |
| Class 5 | Very high | 0.81–1.00 | Very dense vegetation|High biomass ecosystems |
| Exhibition Components | |||
|---|---|---|---|
| Hydroclimatic hazards | Soil | Water resources | Crops |
| Floods | Leaching (loss of soil nutrients) Soil depletion Erosion and destruction of crop beds Compaction and de-structuring during drying (loss of porosity, less aeration for roots) Abandonment/reduction in cultivable land | Degradation of irrigation water quality; Temporary flooding of wells and boreholes. | Reduced germination, stunted seedlings; Root asphyxia, rot; Plant mortality; Proliferation of waterborne diseases and crop pathogens; Rapid decline in growth and loss of yield; Loss of immediate harvests; Lower yields; Decrease in income; Additional costs (reworking the soil, applying fertilizers, replanting).; |
| Drought | Increase in soil temperature Loss of moisture, Decrease in cohesion, Soil salinization; Increased erosion; Reduction in organic matter; Soil hardening Abandonment/reduction in cultivable land | Decrease in surface water reserves Increased concentration of pollutants Salinization of water | Water stress; Slowed growth; Reduction in product size; Plants more susceptible to disease and pests. Loss of income during the critical season; Lower yields. Increased dependence on expensive pumps and boreholes. |
| Heat waves | Increased evaporation of soil water, Degradation of soil structures Reduction in soil water retention capacity Abandonment/reduction in cultivable land | Decrease in surface water reserves Increased concentration of pollutants; Salinization of water. | Heat stress; Reduced photosynthesis; Disrupted flowering (flower abortion); Leaf burn; Accelerated leaf senescence; Loss of income during the critical season; Lower yields; Additional costs (increased irrigation, fertilizer inputs, replanting); Increased dependence on expensive pumps and boreholes; Loss of Monthly jobs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Azagoun, V.V.A.; Komi, K.; Badou, D.F.; Vissin, E.W.; Klassou, K.S. Spatio-Temporal Dynamics of Urban Vegetation and Climate Impacts on Market Gardening Systems: Insights from NDVI and Participatory Data in Grand Nokoué, Benin. Urban Sci. 2026, 10, 31. https://doi.org/10.3390/urbansci10010031
Azagoun VVA, Komi K, Badou DF, Vissin EW, Klassou KS. Spatio-Temporal Dynamics of Urban Vegetation and Climate Impacts on Market Gardening Systems: Insights from NDVI and Participatory Data in Grand Nokoué, Benin. Urban Science. 2026; 10(1):31. https://doi.org/10.3390/urbansci10010031
Chicago/Turabian StyleAzagoun, Vidjinnagni Vinasse Ametooyona, Kossi Komi, Djigbo Félicien Badou, Expédit Wilfrid Vissin, and Komi Selom Klassou. 2026. "Spatio-Temporal Dynamics of Urban Vegetation and Climate Impacts on Market Gardening Systems: Insights from NDVI and Participatory Data in Grand Nokoué, Benin" Urban Science 10, no. 1: 31. https://doi.org/10.3390/urbansci10010031
APA StyleAzagoun, V. V. A., Komi, K., Badou, D. F., Vissin, E. W., & Klassou, K. S. (2026). Spatio-Temporal Dynamics of Urban Vegetation and Climate Impacts on Market Gardening Systems: Insights from NDVI and Participatory Data in Grand Nokoué, Benin. Urban Science, 10(1), 31. https://doi.org/10.3390/urbansci10010031

