Morphology and Dust-Suppression Evaluation of Fugitive Dust Particles in Beijing
Abstract
:1. Introduction
2. Experiments
2.1. Site Description
2.2. Materials Characterization
2.3. Model Prediction Parameter
2.3.1. Routine Meteorological Data on the Ground
2.3.2. Upper-Air Meteorological Data
2.3.3. Simulation Area Grid Setting and Target Point Selection
2.4. Sample Information and Monitoring Method of PM Concentration
3. Results and Discussions
3.1. Morphology and Composition of Dust Particles
3.2. Simulation Analysis of the Effects of Dust-Suppression Measures
3.3. On-Site Dust-Suppression Effect Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.Y.; Zhang, X.R.; Lin, J.T.; Huang, J.P.; Zhao, D.; Yuan, T.G.; Huang, K.N.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive road dust PM2.5 emissions and their potential health impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Liu, Y.; Gao, H.; Ma, J.; Mao, X.; Wang, Y.; Ma, X. Forecasting PM2.5 induced male lung cancer morbidity in China using satellite retrieved PM2.5 and spatial analysis. Sci. Total Environ. 2017, 607−608, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Liu, E.F.; Lin, Q.; Liu, L.; Yuan, H.Z.; Li, Z.J. Occurrence, sources and health risks of toxic metal(loid)s in road dust from a mega city (Nanjing) in China. Environ. Pollut. 2020, 263, 114518–114526. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chow, J.C.; Kohl, S.D.; Yatavelli, L.N.; Percy, K.E.; Legge, A.H.; Watson, J.G. Wind erosion potential for fugitive dust sources in the athabasca oil sands region. Aeolian Res. 2015, 18, 121–134. [Google Scholar] [CrossRef]
- Noh, H.J.; Lee, S.K.; Yu, J.H. Identifying effective fugitive dust control measures for construction projects in Korea. Sustainability 2018, 10, 1206. [Google Scholar] [CrossRef] [Green Version]
- Vega, E.; Mugica, V.; Reyes, E.; Sánchez, G.; Chow, J.C.; Watson, J.G. Chemical composition of fugitive dust emitters in Mexico City. Atmos. Environ. 2001, 35, 4033–4039. [Google Scholar] [CrossRef]
- Yang, S.H.; Chen, J.M. Air pollution prevention and pollution source identification of chemical industrial parks. Process Saf. Environ. Prot. 2022, 159, 992–995. [Google Scholar] [CrossRef]
- Zou, B.B.; Huang, X.F.; Zhang, B.; Dai, J.; Zeng, L.W.; Feng, N.; He, L.Y. Source apportionment of PM2.5 pollution in an industrial city in southern China. Atmos. Pollut. Res. 2017, 8, 1193–1202. [Google Scholar] [CrossRef]
- Mardones, C. Determining the ‘optimal’ level of pollution (PM2.5) generated by industrial and residential sources. Environ. Impact Asses. 2019, 74, 14–22. [Google Scholar] [CrossRef]
- Lin, M.L.; Gui, H.R.; Wang, Y.; Peng, W.H. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environ. Sci. Pollut. Res. 2017, 24, 1987–1998. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhao, L.J.; Sun, W.J.; Xue, J.; Xie, Y.J. Identifying redundant monitoring stations in an air quality monitoring network. Atmos. Environ. 2018, 190, 256–268. [Google Scholar] [CrossRef]
- Petit, H.A.; Paulo, C.I.; Cabrera, O.A.; Irassar, E.F. Evaluation of the dustiness of fugitive dust sources using gravitational drop tests. Aeolian Res. 2021, 52, 100724–100732. [Google Scholar] [CrossRef]
- Cui, M.C.; Lu, H.Y.; Etyemezian, V.; Su, Q.L. Quantifying the emission potentials of fugitive dust sources in Nanjing, East China. Atmos. Environ. 2019, 207, 129–135. [Google Scholar] [CrossRef]
- Khuluse-Makhanya, S.; Stein, A.; Breytenbach, A.; Gxumisa, A.; Dudeni-Tlhone, N.; Debba, P. Ensemble classification for identifying neighbourhood sources of fugitive dust and associations with observed PM10. Atmos. Environ. 2017, 166, 151–165. [Google Scholar] [CrossRef]
- Li, T.K.; Dong, W.; Dai, Q.L.; Feng, Y.C.; Bi, X.H.; Zhang, Y.F.; Wu, J.H. Application and validation of the fugitive dust source emission inventory compilation method in Xiong’an New Area, China. Sci. Total Environ. 2021, 798, 149114–149123. [Google Scholar] [CrossRef] [PubMed]
- Leoni, C.; Pokorna, P.; Hovorka, J.; Masiol, M.; Topinka, J.; Zhao, Y.J.; Krumal, K.; Cliff, S.; Mikuska, P.; Hopke, P.K. Source apportionment of aerosol particles at a European air pollutionhot spot using particle number size distributions and chemical composition. Environ. Pollut. 2018, 234, 145–154. [Google Scholar] [CrossRef]
- Pokorná, P.; Leoni, C.; Schwarz, J.; Ondráček, J.; Ondráčková, L.; Vodička, P.; Zíková, N.; Moravec, P.; Bendl, J.; Klán, M.; et al. Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry. Environ. Sci. Pollut. Res. 2020, 27, 38631–38643. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, Y.Y.; Hopke, P.K.; Holsen, T.M.; Dhaniyala, S. Characteristics of traffic-induced fugitive dust from unpaved roads. Aerosol Sci. Technol. 2017, 51, 1324–1331. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.M.; Chen, Y.Y.; Chen, Z.L.; Xu, S.Y. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229. [Google Scholar] [CrossRef]
- Ostro, B.D.; Hurley, S.; Lipsett, M.J. Air pollution and daily mortality in the Coachella Valley, California: A study of PM10 dominated by coarse particles. Environ. Res. 1999, 81, 231–238. [Google Scholar] [CrossRef]
- Labrada-Delgado, G.; Aragon-Pina, A.; Campos-Ramos, A.; Castro-Romero, T.; Amador-Munoz, O.; Villalobos-Pietrini, R. Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmos. Pollut. Res. 2012, 3, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.D.; Dang, Z.; Huang, W.L.; Shao, L.Y.; Li, W.J. Microscopic morphology and size distribution of particles in PM2.5 of Guangzhou City. J. Atmos. Chem. 2009, 64, 37–51. [Google Scholar] [CrossRef]
- Deng, X.B.; Zhang, F.; Rui, W.; Long, F.; Wang, L.J.; Feng, Z.H.; Chen, D.L.; Ding, W.J. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. Vitro 2013, 27, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Parvej, S.; Naik, D.L.; Sajid, H.U.; Kiran, R.; Huang, Y.; Thanki, N. Fugitive dust suppression in unpaved roads: State of the art research review. Sustainability 2021, 13, 2399. [Google Scholar] [CrossRef]
- Wang, P.F.; Han, H.; Liu, R.H.; Li, Y.J.; Tan, X.H. Effects of metamorphic degree of coal on coal dust wettability and dust-suppression efficiency via spraying. Adv. Mater. Sci. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.F.; Zhang, K.; Liu, R.H. Influence of air supply pressure on atomization characteristics and dust-suppression efficiency of internal-mixing air-assisted atomizing nozzle. Powder Technol. 2019, 355, 393–407. [Google Scholar] [CrossRef]
- Jin, H.; Nie, W.; Zhang, Y.; Wang, H.; Zhang, H.; Bao, Q.; Yan, J. Development of environmental friendly dust suppressant based on the modifification of soybean protein isolate. Processes 2019, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Q.; Qian, C.; Yi, H. Microbial-induced mineralization and cementation of fugitive dust and engineering application. Constr. Build Mater. 2016, 121, 437–444. [Google Scholar] [CrossRef]
- Bao, Q.; Nie, W.; Liu, C.; Liu, Y.; Zhang, H.; Wang, H.; Jin, H. Preparation and characterization of a binary-graft-based, water-absorbing dust suppressant for coal transportation. J. Appl. Polym. Sci. 2018, 136, 47065–47075. [Google Scholar] [CrossRef]
- Lee, T.; Park, J.; Knoff, D.S.; Kim, K.; Kim, M. Liquid amphiphilic polymer for effective airborne dust suppression. RSC Adv. 2019, 9, 40146–40151. [Google Scholar] [CrossRef]
- Dang, X.; Shan, Z.; Chen, H. Usability of oxidized corn starch-gelatin blends for suppression and prevention of dust. J. Appl. Polym. Sci. 2017, 134, 44437–44445. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, W.; Wang, H.; Bao, Q.; Jin, H.; Liu, Y. Preparation and experimental dust suppression performance characterization of a novel guar gum-modification-based environmentally-friendly degradable dust suppressant. Powder Technol. 2018, 339, 314–325. [Google Scholar] [CrossRef]
- Kim, D.; Quinlan, M.; Yen, T.F. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems. Waste Manag. 2009, 29, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K. The use of oil refinery wastes as a dust suppression surfactant for use in Mining. Environ. Eng. Sci. 2008, 25, 1189–1196. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Leite, C.M.; Lago, R.M. Use of glycerol by-product of biodiesel to produce an efficient dust suppressant. Chem. Eng. J. 2012, 180, 364–369. [Google Scholar] [CrossRef]
- Xi, Z.; Jiang, M.; Yang, J.; Tu, X. Experimental study on advantages of foam–Sol in coal dust control. Process. Saf. Environ. Prot. 2014, 92, 637–644. [Google Scholar] [CrossRef]
- Cui, D.; Baisheng, N.; Hua, Y.; Linchao, D.; Caihong, Z.; Fei, Z.; Hailong, L. Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution. Procedia Eng. 2011, 26, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- Carruthers, D.J.; Seaton, M.D.; McHugh, C.A.; Sheng, X.Y.; Solazzo, E.; Vanvyve, E. Comparison of the complex terrain algorithms, incorporated into two commonly used localscale air pollution dispersion models (ADMS and AERMOD) using a hybrid model. J. Air Waste Manag. Assoc. 2011, 61, 1227–1235. [Google Scholar] [CrossRef] [Green Version]
- Riddle, A.; Carruthers, D.; Sharpe, A.; McHugh, C.; Stocker, J. Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ. 2004, 38, 1029–1038. [Google Scholar] [CrossRef]
- Zhang, R.F.; Liu, C.; Zhou, G.M.; Sun, J.; Liu, N.; Hsu, P.C.; Wang, H.T.; Qiu, Y.C.; Zhao, J.; Wu, T.; et al. Morphology and property investigation of primary particulate matter particles from different sources. Nano Res. 2017, 11, 3182–3192. [Google Scholar] [CrossRef]
Weather Station Name | Weather Station Number | Weather Station Class | Location | Relative Distance/km | Altitude/m | Year | Meteorological Elements | |
---|---|---|---|---|---|---|---|---|
Longitude | Latitude | |||||||
Tongzhou Weather Station | 54431 | General Station | 116.6399 E | 39.9148 N | 5.5 | 30 | 2018 | Wind direction, wind speed, dry bulb temperature, total cloud cover, rainfall |
Coordinates of the Center Point of the Simulation Area | Altitude/m | Year | High-Altitude Meteorological Elements | |
---|---|---|---|---|
Longitude | Latitude | |||
116.6992 E | 39.8808 N | 22 | 2018 | Height above ground, wind speed, degree of northerly wind direction, dry bulb temperature, dew point temperature, air pressure |
Serial Number | Name | Coordinate | Distance from Construction Site (m) | |
---|---|---|---|---|
Longitude | Latitude | |||
1 | Qiao Village | 116.6882 | 39.8938 | 1170 |
2 | Small Street Third Village | 116.6855 | 39.8778 | 1265 |
3 | Small holy temple village | 116.7146 | 39.8824 | 945 |
4 | Beisanjianfang Village | 116.6807 | 39.8882 | 1418 |
Element | Bare Land Dust (wt.%) | Stock Dump Dust (wt.%) | Construction Dust (wt.%) | Road Dust (wt.%) |
---|---|---|---|---|
C | 59.17 | 0.00 | 0.00 | 0.00 |
N | 0.00 | 0.00 | 0.00 | 0.00 |
O | 26.11 | 50.92 | 44.05 | 44.00 |
Na | 0.00 | 0.56 | 1.35 | 0.00 |
Mg | 0.00 | 6.08 | 5.11 | 6.23 |
Al | 0.40 | 8.37 | 3.13 | 10.72 |
Si | 13.33 | 16.39 | 26.65 | 17.84 |
P | 0.58 | 3.59 | 0.00 | 3.21 |
S | 0.00 | 0.00 | 0.00 | 0.00 |
Cl | 0.03 | 0.40 | 0.75 | 0.74 |
K | 0.23 | 3.66 | 0.51 | 3.19 |
Ca | 0.15 | 7.61 | 18.44 | 1.91 |
Fe | 0.00 | 2.42 | 0.00 | 12.16 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Date (Month/Year) | Weekly Emissions (kg) | Weekly Collections (kg) | Dust-Suppression Efficiency (%) |
---|---|---|---|
11/2019 | 801.36 | 738.85 | 92.2% |
12/2019 | 547.96 | 504.12 | 92% |
06/2020 | 640.61 | 581.03 | 90.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; He, L.; Wang, H.; Gao, C.; Yang, H. Morphology and Dust-Suppression Evaluation of Fugitive Dust Particles in Beijing. Sci 2022, 4, 27. https://doi.org/10.3390/sci4030027
Yang T, He L, Wang H, Gao C, Yang H. Morphology and Dust-Suppression Evaluation of Fugitive Dust Particles in Beijing. Sci. 2022; 4(3):27. https://doi.org/10.3390/sci4030027
Chicago/Turabian StyleYang, Tao, Lijuan He, Hailin Wang, Chengjie Gao, and Hongling Yang. 2022. "Morphology and Dust-Suppression Evaluation of Fugitive Dust Particles in Beijing" Sci 4, no. 3: 27. https://doi.org/10.3390/sci4030027