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Abstract: Aiming to further improve the dust suppression performance of the dust suppressant,
the present study independently develops a new type of biodegradable environmentally-friendly
dust suppressant. Specifically, the naturally occurring biodegradable soybean protein isolate (SPI)
is selected as the main material, which is subject to an anionic surfactant, i.e., sodium dodecyl
sulfonate (SDS) for modification with the presence of additives including carboxymethylcellulose
sodium and methanesiliconic acid sodium. As a result, the SDS-SPI cementing dust suppressant is
produced. The present study experimentally tests solutions with eight different dust suppressant
concentrations under the same experimental condition, so as to evaluate their dust suppression
performances. Key metrics considered include water retention capability, cementing power and dust
suppression efficiency. The optimal concentration of dust suppressant solution is determined by
collectively comparing these metrics. The experiments indicate that the optimal dust suppressant
concentration is 3%, at which level the newly developed environmentally-friendly dust suppressant
solution exhibits a decent dust suppression characteristic, with the water retention power reaching its
peak level, and the corresponding viscosity being 12.96 mPa·s. This performance can generally meet
the requirements imposed by coal mines. The peak efficiency of dust suppression can reach 92.13%.
Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used
to analyze the dust suppression mechanism of the developed dust suppressant. It was observed that
a dense hardened shell formed on the surface of the pulverized coal particles sprayed with the dust
suppressant. There is strong cementation between coal dust particles, and the cementation effect is
better. This can effectively inhibit the re-entrainment of coal dust and reduce environmental pollution.

Keywords: soybean protein isolate modification; dust suppressant; performance characterization;
optimal concentration; analysis of dust suppression mechanism

1. Introduction

Coal serves as the fundamental source of energy in China. Throughout the foreseeable future,
coal will still occupy a significant proportion of primary energy in China [1–5]. During the outdoor
storage of coal piles and railroad transportation of coal, a large amount of coal dust may be generated,
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which not only causes the loss of coal and waste of natural resources, but also leads to severe
environmental pollution [6–12]. Besides, as for coal piles, the dust dispersion can adversely impact
the normal operation of electric and mechanical equipment as well as the monitoring system, leading
to a shortened lifespan. More seriously, the increase of dust concentration can pose a major threat to
operational safety, triggering the occurrence of accidents [13–17]. The traditional dust suppression
methods include water spray and tarp coverage, which are unfavorable due to high cost and poor
long-term dust suppression performance. Therefore, scholars in the international community have
started to develop chemical-based dust suppression methods, which have proven to be promising
in many dust suppression applications [18–24]. Overall, the chemical dust suppressant is highly
favored considering its dust suppression effect, economic viability and environmental-friendliness,
and therefore has a vast potential for future development [25–30]. The chemical dust suppressant
functions effectively on open dust sources, and therefore this technology has been widely applied to
those enterprises with a major generation of coal dust, such as railroad transportation departments,
dumping sites and thermal power plants [31–36]. In recent years, the domestic and foreign research on
chemical dust suppressant is shifting its focus to enhancing recyclability, environmental-friendliness,
and efficiency [37–42]. Bao et al. [43] took corn starch as the main raw material and developed a
kind of super absorbent dust suppressant by chemical modification method, which can effectively
inhibit the dust diffusion during coal transportation. Grogan [44] conducts research on combining the
byproduct of biodiesel production, i.e., glycerol, with surfactant, polyhydroxy esters and acrylic acid
compound to produce a dust suppressant, with its performance being characterized. The prepared
suppressant has a decent dust suppression effect and is environmentally friendly. Zhang et al. [45]
employs glasswort as the raw material, which is blended with sodium dodecylbenzene sulfonate
and carboxylmethyl cellulose as the additives to produce an ecologically friendly dust suppressant.
Zhang et al. [46] prepared a degradable dust suppressant by chemical modification using a polymer
material guar gum as the main raw material. The dust suppressant has good wettability and water
retention. Yang et al. [47] utilizes film coalescing aid, fatty alcohol polyoxyethylene ether and polyvinyl
alcohol as the raw materials to develop a dust suppressant with a decent ability to withstand rainfall
and wind, making it primarily applied to coal transportation. The spray of this suppressant causes a
thick hardened layer to form on the particles surface, resulting in a long dust suppression duration.
Polat H. et al. [48] uses Polyethylene oxide (PEO)/PO as the raw material to synthesize a dust
suppressant, which can effectively wet the coal dust during the mining process while mitigating the
equipment corrosion.

The application of cementing dust suppressant is an effective method for preventing and
controlling dust dispersion, with cementing power, water retention ability and dust reduction
efficiency being the key factors dictating the dust suppression performance of the cementing
dust suppressant. Although those aspects have been extensively discussed by domestic and
overseas scholars, their studies are mainly focused on certain individual characteristics, without
covering the entire suite of metrics [49–53]; also, those cementing dust suppressants are subject
to certain disadvantages, including toxicity, lack of biodegradability, and the tendency to cause
secondary pollution, etc. [54–60]. To address the aforementioned problems, the present study uses
biodegradable and environmentally-friendly soybean protein isolate (SPI) as the main material.
SPI is a main ingredient of soybean. It contains a large amount of active functional groups,
and is favored for its biodegradability, and available from various resources. It is therefore an
environmentally-friendly material for producing environmentally-friendly and pollution-free dust
suppressant [61–69]. The present study uses sodium dodecyl sulfonate to modify the SPI while adding
carboxymethylcellulose sodium and methanesiliconic acid sodium to the mixture so as to develop a
new type of environmentally-friendly naturally-occurring macromolecular dust suppressant, namely
SDS-SPI cementing dust suppressant; subsequently, the present study experimentally measures a suite
of performance metrics associated with the newly developed dust suppressant, based on which the
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optimal dust suppressant concentration is determined. At the same time, the research results also
provide ideas for the development of other types of high-efficiency environmental dust suppressants.

2. Experiments

2.1. Main Equipment and Raw Materials

The reagents and equipment used in the present study are listed in Tables 1 and 2.

Table 1. Primary raw materials used in the experiment.

Chemical Name Chemical
Formula Purity Manufacturer

Soybean protein isolate C13H10N2 BR Sinopharm Chemical Reagent Co., Ltd.,
Beijing, China

Carboxymethylcellulose
sodium C8H11O7Na CP Xiya Reagent Co., Ltd., Chengdu, China

Methanesiliconic acid
sodium CH5SiO3Na CP Shandong Yousuo Chemical Technology

Co., Ltd., Qingdao, China
Sodium dodecyl

sulfonate C12H25OSO3Na Tech Shandong Yousuo Chemical Technology
Co., Ltd., Qingdao, China

Notes: BR indicates that the chemical reagent is a biochemical reagent; CP indicates chemical purity; Tech indicates
an industrial reagent.

Table 2. Key experimental equipment and specifications.

Experimental Equipment Specifications Manufacturer

Rotary viscometer NDI-79 Shanghai Precision Instrument Co., Ltd.
Shanghai, China

High-Resolution Scanning
Electron Microscope Nova Nano SEM Shanghai Casting Gold Analytical Instruments

and Equipment Co., Ltd. Shanghai, China
Fourier-transform infrared

spectroscope Nicolet (iS10) Beijing Kaifeng Fengyuan Technology Co., Ltd.
Beijing, China

Coal mine dust sampler AKFC-92 Qingdao Lubo Weiye Environmental Protection
Technology Co., Ltd. Qingdao, China

Mine energy-saving axialfan ASZ-11.2 Zibo Jinhe Fan Co., Ltd. Zibo, China

2.2. Preparation of SDS-SPI Cementing Dust Suppressant

Put 7.50 g of SPI (Sinopharm Chemical Reagent Co., Ltd., Beijing, China), 0.15 g of sodium
dodecyl sulfonate (SDS, Shandong Yousuo Chemical Technology Co., Ltd., Qingdao, China), 0.15 g
of carboxymethylcellulose sodium (CMC, Xiya Reagent Co., Ltd., Chengdu, China) and 140 mL of
water in a three-neck round-bottom flask with sufficient stirring. Raise the temperature of the solution
to 60 ◦C and let the reaction last for one hour at this temperature. Then let the solution cools down.
2.50 g of 30% methanesiliconic acid sodium was added to the solution, followed by stirring it evenly.
The experiment finally developed a SDS-SPI cementing dust suppressant with a soy protein isolate
concentration of 5%. The stirring speed is controlled to be 60–80 r/min throughout the reaction
process to prevent the solution from foaming in a large amount. In the process of application, the dust
suppressant solution was diluted by different multiples, resulting in modified SDS-SPI cementing
dust suppressant solutions whose SPI concentrations are 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4% and
5%, respectively.

2.3. Application of SDS-SPI Cementing Dust Suppressant

The coal samples used in the experiment were coking coal from the 20,206 fully mechanized
working face of Zaozhuang Corporation’s Jiangzhuang, Shandong province. Coal samples were
ground into pulverized coal using a planetary motion micro mill, and then fine pulverized coal with
particle size less than 3 mm was screened through a sieve with a hole size of 3 mm. The prepared coal
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sample is dried in a vacuum drying chamber (Shanghai lang gan experimental equipment co., LTD,
Shanghai, China) at a temperature of 100 ◦C. The fine coal particles with a particle size of 0–3 mm was
placed in 9 Petri dishes. The extrusion method was used to flatten the surface of the sample and then
eight kinds of dust suppressant solutions with different SPI concentrations were evenly sprayed onto
the corresponding eight coal samples with a density of 2 L/m2. The ninth coal sample was evenly
sprayed with water.

3. Characterization of Properties

3.1. Experimental Characterization of Water Retention Performance of Dust Suppressant

The water retention of a dust suppressant can be measured through its ability to resist evaporation.
Under the same experimental condition, an improved water retention of dust suppressant corresponds
to an enhanced anti-evaporation characteristic, leading to an improved dust suppression effect.
The anti-evaporation characteristic of a solution can be measured with the evaporation rate, where
a low evaporation rate indicates a good anti-evaporation performance. Therefore, the present
experiment characterizes the dust suppressant’s water retention based on measuring the evaporation
rate. The experimental procedure is outlined below: under the same experimental condition, put the
desiccated coal sample in a labeled clean Petri dishes; evenly spray the prepared SDS-SPI cementing
dust suppressant solutions at different concentrations over the surface of coal sample at 2 L/m2. Weigh
the sample after its absorption of solution reaches a sufficient level. Then put the sample in a vacuum
drying chamber and keep the temperature at 60 ◦C (Figure 1). At a set interval, take the sample out
of the oven and weigh its mass; the evaporation rate can thereby be calculated with Equation (1).
The final results, as shown in Table 3, can be obtained by linear fitting between measurement results
and time. The corresponding fitted curves are shown in Figures 2 and 3.

θ =
W1 − W2

A T
(1)

where θ denotes the where evaporation rate of dust suppressant (g·m−2·s−1); W1 denotes the coal
sample mass before evaporation (g); W2 denotes the coal sample mass post evaporation (g); A denotes
the evaporation area of coal sample (m2); and T denotes the evaporation time (s).
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Table 3. Evaporation rate of dust suppressant (g·m−2·s−1).

Sample (%)
Time (h)

0.5 1 1.5 2 2.5 3 4 5 6 8 10 12

water 0.062 0.055 0.051 0.042 0.038 0.023 0.015 0.012 0.008 0.008 0.005 0.005
1 0.058 0.052 0.047 0.039 0.035 0.021 0.013 0.013 0.008 0.007 0.003 0.003

1.5 0.045 0.042 0.036 0.034 0.028 0.021 0.012 0.009 0.009 0.007 0.007 0.004
2 0.043 0.040 0.035 0.031 0.025 0.019 0.011 0.008 0.008 0.006 0.006 0.004

2.5 0.031 0.029 0.023 0.017 0.015 0.015 0.010 0.005 0.005 0.003 0.003 0.002
3 0.030 0.028 0.023 0.016 0.012 0.010 0.009 0.006 0.004 0.004 0.002 0.002

3.5 0.034 0.030 0.025 0.018 0.013 0.013 0.011 0.008 0.007 0.004 0.004 0.003
4 0.042 0.038 0.034 0.029 0.024 0.014 0.010 0.009 0.008 0.008 0.005 0.005
5 0.048 0.043 0.035 0.026 0.022 0.018 0.014 0.011 0.010 0.009 0.006 0.006
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It can be seen in Table 3, Figures 2 and 3 that at the same time and under the same experimental
condition, the evaporation rate of clean water is the highest, followed by the evaporation rate of 1% dust
suppressant solution. The water evaporation rates of dust suppressant solutions with concentrations
between 2.5% and 3.5% are relatively small. It can be inferred from Figures 2 and 3 that the 2.5%
and 3% dust suppressant solutions exhibit the smallest evaporation rate, and their evaporation rate
curves are relatively flat, corresponding to limited variation of the evaporation amount within the
same time window; a further comparison indicates that compared to 2.5% dust suppressant, the 3%
dust suppressant solution has the lowest evaporation rate, and its curve does not undergo any major
change, implying that its anti-evaporation characteristic, water retention ability and dust suppression
effect are the best.

3.2. Viscosity Testing Experiments

The viscosity of coal dust suppressant is a key technical indicator associated with the applicability
of samples. This experiment used an NDJ-79 rotational viscometer (Shanghai Precision Instrument
Co., Ltd., Shanghai, China) with its rotating shaft suspended from the equipment. Add a 50 mL fluid
sample to the test vessel and insert the spindle into the liquid until the level mark on the top of the
spindle is immersed in the water. Then adjust the speed knob to keep the speed at 75 rpm. Based
on this condition, the viscosity of the prepared SDS-SPI cement dust suppressant solution diluted
to various concentrations was measured under the same conditions. The measurement is repeated
for three times for each sample, with the mean value treated as the final viscosity of the sample.
The measurement results are shown in Table 4; meanwhile, prepare a solution containing SPI only,
and measure its viscosity under the same experimental condition, with the measurement results shown
in Table 5; finally, one can compare the measurement results derived from two groups, as illustrated in
Figure 4, where (A) denotes the viscosity of SPI solution at various concentrations, and (B) denotes the
viscosity of modified SDS-SPI cementing dust suppressant solutions at various concentrations.

Table 4. Viscosities of sodium dodecyl sulfonate-soybean protein isolate (SDS-SPI) cementing dust
suppressant solutions.

Number
Concentration

1% 1.5% 2% 2.5% 3% 3.5% 4% 5%

1# 3.68 6.20 10.20 13.28 16.20 19.40 22.48 21.84
2# 3.48 6.76 10.72 12.84 16.76 20.84 21.80 22.72
3# 3.04 7.20 9.56 12.76 16.60 20.72 20.64 22.88

Average Viscosity (mPa·s) 3.40 6.72 10.16 12.96 16.52 20.32 21.64 22.48

Table 5. Viscosities of SPI solutions.

Number
Concentration

1% 1.5% 2% 2.5% 3% 3.5% 4% 5%

1# 1.80 3.40 5.01 6.32 8.52 10.29 11.36 12.21
2# 1.92 3.48 5.27 6.59 8.31 10.35 11.44 12.38
3# 1.64 3.32 5.08 7.01 8.61 10.44 11.64 12.61

Average Viscosity (mPa·s) 1.80 3.40 5.12 6.64 8.48 10.36 11.48 12.40
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Figure 4 shows that the viscosity of modified SDS-SPI cementing dust suppressant solution
increases rapidly with SPI concentration. The viscosity value is increased substantially compared to
the viscosity of the solution with SPI only; as the concentration of SPI in the solution reaches 1.0%,
the viscosity of dust suppressant solutions 3.40 mPa·s; as the solution concentration reaches 2.5%,
the viscosity of the solution with SPI is merely 6.64 mPa·s, whereas the viscosity of the modified
dust suppressant solution has reached 12.96 mPa·s, which is more than twice that of pure SPI
solution. Therefore, the dust suppression effect of SDS-SPI cementing dust suppressant solution
is more pronounced. As for the dust suppressant solution used in coal mines, considering the
economic cost and the dust suppression effect, it would be non-ideal to have an excessively high
viscosity. Usually the range of viscosity lies between 12.0–20.0 mPa·s. For this reason, the SDS-SPI
cementing dust suppressant solution with concentration above 2.5% can meet the requirement posed
by coal mines.

3.3. Measurement of Dust Suppression Efficiency

The dust suppression efficiency can be employed as a direct metric to indicate the dust suppression
effect of a dust suppressant. The present experiment is carried out based on the air tunnel simulation
platform located at the Dust Control Laboratory of Shandong University of Science and Technology,
as shown in Figure 5. The air tunnel simulation platform consists of aTDI8000-0750G-4T Infinitely
Variable Inverter (Yueqing Taida Electrical Technology Co., Ltd., Wenzhou, China) and aSZ-11.2
Axial Fan (Zibo Jinhe Fan Co., Ltd., Zibo, China) (as shown in Figure 6), both of which are made
in China. Under the regulation of the inverter, the axial fan can mimic natural wind, whose peak
velocity can reach 32 m/s. Place the sample with hardened shell on the platform, and keep the air
speed at the sample location at 14~16 m/s. Collect samples, i.e., particles suspended in the air with
sizes less than 100 µm, with a coal mine dust sampler (as shown in Figure 7) at the location 3.0 m
downstream of the sample. The sampling process is conducted in a continuous mode, with flow rate
maintained at 20 L/min. The sampling duration is 30 min. Firstly, one needs to test the air in the
experimental chamber for measuring the background concentration; subsequently, the coal sample
sprayed with clear water is tested, with the corresponding coal dust concentration measured; as the
next step, coal samples treated with dust suppressants of eight different concentrations are tested in
a sequential manner, with the corresponding coal dust concentrations in the air recorded. During
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the post-processing stage, the dust suppression efficiency of each test can be calculated according to
Equation (2). Figure 8 illustrates the testing results.

ρ =

(
1 − θx − θ0

θ1 − θ0

)
× 100% (2)

where ρ denote the dust suppression efficiency (%); θ0 denote the background dust concentration
inside experimental chamber (mg/L); θ1 denote the dust concentration for coal sample with clear
water treatment (mg/L); and θx denote the dust concentrations for coal samples treated with different
dust suppressants (mg/L).
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cementing dust suppressants.

Figure 8 shows that as the solution concentration of SDS-SPI cementing dust suppressant
increases, the dust suppression efficiency climbs rapidly. As the mass concentration reaches 3.0%,
the suppressant’s dust suppression efficiency on coal dust peaks at 92.13%; subsequently, the dust
suppression efficiency starts to drop, which is primarily due to the fact that an increase of viscosity
causes the surface tension of SDS-SPI cementing dust suppressant solution on coal dust surface to
increase, leading to a subdued wettability with respect to the coal dust. This change compromises the
dust suppression efficiency.

In summary, as the mass concentration of SDS-SPI cementing dust suppressant solution stays
at 3.0%, its viscosity assumes a value of 16.52 mPa·s, which is considered adequate for coal mine
application; meanwhile, the anti-evaporation characteristic and the dust suppression efficiency of the
dust suppressant solution both reach optimal level under this concentration. Therefore, based on a
comprehensive comparative study covering the factors elaborated above, it is determined that the
optimal concentration of the current SDS-SPI cementing dust suppressant solution is 3%.

4. Analysis of Dust Suppression Mechanism

4.1. Infrared Spectra Tests

The current experiment was tested using a Nicolet iS10 Fourier-Transform infrared spectrometer
(Beijing Kaifeng Fengyuan Technology Co., Ltd., Beijing, China). First, the sample was mixed with
potassium bromide in an agate mortar at a ratio of 1:200. The ground mixture powder was then
made into transparent thin pellets for testing. The test measurement range is between 4000 and
500 cm−1, and each sample is scanned 6 times. The infrared spectrum before and after SPI modification
is shown in Figure 9, where (A) is the spectrum of SPI, and (B) is the corresponding spectra after
SPI modification.
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Figure 9 shows the infrared spectra of SPI before and after SDS modification. As can be seen
from the figure, the wave number of 3379.33 cm−1 mainly corresponds to the spectral peaks of –NH,
–OH and sulfonamide bond; The wave number 2800 cm−1 corresponds to the absorption peak of CH2.
Wave number 1653.69 cm−1 corresponds to C=O stretching peak in band I of amide; The wave number
of 1529.78 cm−1 corresponds to the superposition peaks of N–H bending vibration and C–N stretching
vibration in band II, as well as the absorption peaks of sulfa bonds. The wave number of 1393.1 cm−1

corresponds to the characteristic peaks of sulfa bond and COO–. The wave numbers of these two
peaks are 1653.69 cm−1 and 1529.78 cm−1 respectively, which correspond to the characteristic spectral
peaks and their bending vibration of the benzene ring in the C–H [70–75].

After modification, the spectral peaks at 3379.33 cm−1 and 1393.1 cm−1 in Figure 9B (representing
the sulfonamide bond) moved to the left with a slight increase in amplitude, indicating that the
addition of anionic surfactant SDS in the modification of SPI with anionic surfactant SDS would
destroy the dense structure existing in SPI and relax SPI. This process may result in the formation of
protein-surfactant (SDS-SPI) complex chemicals. In addition, loose connections between domains are
compromised, resulting in a decrease in the molecular weight of the protein, which can be enhanced
if it occurs within a certain range [76–82]. At the same time, comparing the results before and after
the modification, it was found that the modified SDS-SPI moved to the left at the absorption peaks
of 3377.33 cm−1, 2800 cm−1 and 1393.1 cm−1 during the strengthening process. This indicates that
the amount of newly formed SDS-SPI composite chemicals increases, leading to an increase in the
relaxation degree of SPI structure. At the same time, the internal hydrophobic functional group is
transformed outward, which improves the water solubility of SPI. The more relaxed the protein
structure, the more functional groups, the better the coal dust cementing effect. Although the peaks
of 1653.69 cm−1 and 1529.78 cm−1 were basically stable, the intensity increased slightly, indicating
that the benzene ring entered the SPI molecular structure, further confirming the formation of SDS-SPI
complex chemistry. At the same time, under the influence of SDS, a group of different hydrophilic
functional groups move inward and the hydrophobicity is enhanced. CMC is a commonly used
viscosifier that enhances the viscosifying effect of the anionic surfactant SDS. Methanesiliconic acid
sodium is a water-resistant enhancer that interacts with CO2 in the air to cause polycondensation
between molecules to form a macromolecular structure that is spatially interconnected. The hydrophilic
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hydroxyl group in the polycondensation process is converted into a hydrophobic Si–O bond, so that
the reagent has strong water resistance.

4.2. Scanning Electron Microscope (SEM) Experiments

The current experiment employs D-type high-resolution SEM to investigate the surface
morphology of the sample. Three sets of samples are selected, and the coal powder used here is
coking coal derived from the 20206 mechanized mining face of Shandong Zaozhuang Corporation’s
Jiangzhuang Coal Mine. A planetary motion micro mill is used to grind the coal chunks into fine
powder for the tests. Figure 10 shows the 5000× SEM image of dry coal powder; Figure 11 shows
the 5000× SEM photo of coal powder treated with SPI only; Figure 12 shows the 5000× SEM photo
of coal powder treated by the developed SDS-SPI cementing dust suppressant solution with optimal
spray concentration.
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suppressant solution with optimal spray concentration.

In order to study the effect of dust suppressant on the cementation hardening effect of pulverized
coal before and after modification, three groups of pulverized coal were scanned by SEM in this study.
The surface morphology is shown in Figures 10–12. Figure 10 is a 5000× SEM image of the surface
morphology of the dry powder. Under this circumstance, it was found that the shape and size of the
coal dust particles changed greatly, the particle spacing was large, and there was a lack of cementation
between the particles. In this case, the coal powder is highly susceptible to the dispersion of air,
causing dust pollution. Figure 11 shows the SEM pulverized coal 5000× SEM image. The study found
that the coal dust particles are tightly bonded and the cementation spacing is small. This is mainly
driven by the viscosity of the SPI. Figure 12 is a 5000× SEM image of pulverized coal treated with
the optimal concentration of the developed SDS-SPI cementing dust suppression solution. It can be
seen from the yellow circle area in the figure that the coal powder particles are tightly cemented, the
cementation strength is high, and the cementation spacing between the coal powder particles is small.
This indicates that the viscosity of the SDS-SPI compound chemical modification is increased, which is
consistent with the viscosity test results of this study; the SDS-SPI cementing dust suppression solution
modified by SPI can form a dense layer on the surface of the coal powder. The hardened shell layer
cements pulverized coal particles of different particle sizes, and the cementing effect is good, thereby
suppressing the re-flying of coal dust.

5. Conclusions

(1) The newly developed environmentally-friendly dust suppressant uses SPI as the main
cementing ingredient, carboxymethylcellulose sodium as the viscosity enhancer, and methanesiliconic
acid sodium as the water resisting additive. Based on modifying SPI with anionic surfactant sodium
dodecyl sulfonate, a novel biodegradable environmentally-friendly cementing dust suppressant
is prepared.

(2) It is best to use anionic surfactant (SDS) to modify SPI so as to destroy and relax its original
compact sphere structure, forming protein-surfactant (SDS-SPI) composite chemical. After the
modification, the hydrophobic functional groups inside the protein-surfactant composite chemical
move outward, allowing the coal dust to better absorb the hydrophobic functional groups such that
the coal dust is more thoroughly cemented for delivering the dust suppression effect.

(3) Compared to SPI solution, the modification further improves the viscosity and water
retention of the SDS-SPI cementing dust suppressant solution; based on a comprehensive comparison
concerning water retention, viscosity and dust suppression efficiency of dust suppressant, the optimal
concentration of dust suppressant solution is finally determined to be 3%. At this level, the
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anti-evaporation and water retention characteristics are optimal, with the dust suppression effect
being maximized.

(4) The present study conducts SEM high-resolution scanning over the surfaces of native coal
powder, coal powder with SPI, and coal powder with dust suppressant at optimal concentration.
At 5000×, it is found that the coal powder particles are compactly cemented when the dust suppressant
at optimal concentration is applied, exhibiting a strong cementing power. Also, a layer of compact
hardened shell forms at the surface, leading to a decent dust suppression effect.

(5) SPI, as the main material used in the present experiment, contains a large number of functional
groups, which has an array of favorable properties, including being naturally occurring and being
biodegradable. This further demonstrates that the independently developed dust suppressant is
biodegradable, environmentally-friendly and clean, and does not pose any threat to the environment.
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